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0 [Prefacd

1916-1995

Hiiseyin Demir was a prolific problem composer who composed more
than one hundred problems in his lifetime. He almost exclusively pub-
lished in American Mathematical Monthly and in Mathematics Magazine.

His first publication appeared in 1943 in American Mathematical Monthly
as “Advanced Problem 4102”.

His last publication was in 1993 in Mathematics Magazine as the “So-
lution by the proposer” to his “Proposal 1405” which had appeared the
year before.

I have used JSTOR’s search engine to find publications of Hiiseyin Demir
in American Mathematical Monthly and Mathematics Magazine. Here 1
not only collected problems proposed by Demir but also the solutions
supplied to his problems. In addition to these I also collected published
solutions contributed by Demir to other composers’s problems.

Hiiseyin Demir was an alumnus of Dartigsafaka High School.

Darissafaka Cemiyeti was established in 1863 by five young Ottoman
gentlemen whose ages were 38, 35, 31, 27 and 24. Sultan Abdiilaziz who
gave his consent for this establishment was also only 33 years old at the
time.

Daritigsafaka is the first non-governmental educational organization in
Turkish history. During the last decades of the Empire most muslim
Ottoman men who were recruited for the army were lost as the result of
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long and frequent battles. Thus most families were losing their fathers
and their children were then forced to leave their education and start
working at Kapalicarsr.

On the other hand non-muslim Ottoman children did not suffer from this
mishap. Hence the motto of Dartigsafaka Cemiyeti, at that time was and
still today is “Equal opportunity in education”. Children who have lost
one of their parents and are financially not able to pursue a proper ed-
ucation are accepted to Dartigsafaka after a competitive entrance exam.
Dariiggafaka is a boarding high school and all the daily and educational
expenses of students are provided by Dartigsafaka Cemiyeti which is sup-
ported to this day by donations. Today Dartigsafaka is recognized as one
of the best educational establishments of Turkey:.

Salih Zeki, another of our famous mathematicians, was an 1882 alumnus
of Dariigsafaka. Hiiseyin Demir is 1935 alumnus and according to his
telling he read books of Salih Zeki when he was in school. While he was
a middle school student at Dariigsafaka he came up with a novel proof
of Pythagoras theorem, which is in the genre of “proof without words”
and [ am reproducing it here.

I found it my responsibility to my school to compile this collection of
Hiiseyin Demir’s problems. To continue the tradition under which we
grew, this collection is meant to be used freely for educational purposes.

Ali Sinan Sertoz

1973 alumnus of Dartigsafaka
sertoz@bilkent.edu.tr
December 2021 Ankara




1 |Advanced Problems for MON THLY|

List of Advanced Problems:

[1] Advanced Problem 4102, American Mathematical Monthly, 50, (1943), 63
[2] Advanced Problem 4125, American Mathematical Monthly, 51, (1944), 25
[3] Advanced Problem 4134, American Mathematical Monthly, 51, (1944), 47
[4] Advanced Problem 4193, American Mathematical Monthly, 53, (1946), 16
[5] Advanced Problem 4215, American Mathematical Monthly, 53, (1946), 47
[6] Advanced Problem 4679, American Mathematical Monthly, 63, (1956), 19
[7] (1956)

8] (1956)

[9] (1957)
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7] Advanced Problem 4695, American Mathematical Monthly, 63, (1956), 42
8] Advanced Problem 4710, American Mathematical Monthly, 63, (1956), 66
9] Advanced Problem 4735, American Mathematical Monthly, 64, (1957), 27
10] Advanced Problem 4818, American Mathematical Monthly, 65, (1958), 779.
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Advanced Problem 4102, American Mathematical Monthly, 50, (1943), 638.

4102. Proposed by Hiiseyin Demir, Columbia University

Let O and I be respectively the circumcenter and incenter of a given tri-
angle ABC. Let Aq, Bo, Co be points taken respectively on BC, CA, 4B so that
the sums of the algebraic distances of each point to two other sides are equal to
a given length /. Prove synthetically that: (1) The points 4y, By, Cy are collinear;
(2) The sum of distances to the sides of 4 BC of points on 4,B,Cy is the con-
stant /; (3) the line 4,ByC, is perpendicular to the line OI.
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Advanced Problem 4125, American Mathematical Monthly, 51, (1944), 252.

4125. Proposed by Hiiseyin Demir, Columbia University

Prove that
sinfy —e 0 O .--0 0
sin 04 et — gt o .--0 0
sin 03 0 e —e... 0 0 = sin (01 + 02+ - - - + 0,).
sinf, 0 0 0 ---0 ¢

Advanced Problem 4134, American Mathematical Monthly, 51, (1944), 475.

4134. Proposed by Hiseyin Demir, Columbia University

Let CMCICL be the inscribed triangle of a reference triangle 4:4,4s, and
C2C2(C? be that of CICLC}, and so on, obtaining a triangle C{C;C3 after # steps.
Denoting the angles of the #th triangle by C7, prove that

1. (C}—7/3)/(Ai—n/3)=(—1)"2"",

2. The limit of the direction of C;C3 as n— 0, is the direction of one of the
trisectrices of the angle (4243, C3C3), and from that observe a method of tri-
secting an angle by ruler and compass in infinitely many steps.

Advanced Problem 4193, American Mathematical Monthly, 53, (1946), 160.

4193. Proposed by Hiiseyin Demir, Columbia University
If on the sides of an arbitrary pentagon 4:14.434 45 the triangles B;A ;12413

(with indices reduced mod 5) are constructed such that B;A;||4:4:41, and
Bidiys||Aid 4, then the lines 4;B; concur in a point C.
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Advanced Problem 4215, American Mathematical Monthly, 53, (1946), 470.

4215. Proposed by Hiiseyin Demir, Columbia University

Prove that the Hermite polynomials defined as follows

H,,(x) = (_ 1)nex2/2 e—zzl2,
dx™
have the property
2
n. Hy(%)
ny -—-";-— = Ho(2) — Ha(2)Hoypo().
p=0 A

Advanced Problem 4679, American Mathematical Monthly, 63, (1956), 191.

4679. Proposed by Hiiseyin Demir, Zonguldak, Turkey

If A;A5A434445 is a cyclic pentagon and if Q;; denotes the orthopole of the
line 4;4; with respect to the triangle formed by the remaining three vertices,
then prove that the ten points 2;; all lie on a circle.

Advanced Problem 4695, American Mathematical Monthly, 63, (1956), 426.
4695. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that if in a cyclic quadrangle the Simson line of one vertex with re-
spect to the triangle formed by the other three is perpendicular to the Euler line
of that triangle, then the same property holds for the other vertices of the
quadrangle.

Advanced Problem 4710, American Mathematical Monthly, 63, (1956), 669.
4710. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that if in a complete quadrangle inscribed in a circle (O) one pair of
opposite sides are isotomic lines with respect to a triangle inscribed in (O), then
the remaining pairs of opposite sides are also isotomic lines with respect to the
same triangle.
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Advanced Problem 4735, American Mathematical Monthly, 64, (1957), 277.
4735. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Let 414,434 445 be a simple 5-point plane figure, and let d be any line in the
plane of the figure. Let the common point of the line & and the side a; opposite

to 4; be denoted by B;, and the common point of the lines 4;B;;1, B;4i41 by
Ciss. Then the five lines 4;C; have a point D in common.

Advanced Problem 4818, American Mathematical Monthly, 65, (1958), 779.
4818. Proposed by Hiiseyin Demair, Zonguldak, Turkey

Let d; be the sides of a complete quadrilateral, and A4,; be the vertex on
d., d;. Let ¢; be the triangle formed by the sides other than d;, and (0;) denote
the circumcircle of #;. Denote the Simson line of a point S; of (0;) with respect
to ¢; by .D,'.

Then prove that, if D; and d; are parallel for all ¢, (1) the line S;0, passes
through the vertex 4, (4, p#gq, r), and (2) the points S; all lie on the Miquel
circle (0).
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Solution to Problem 4102:
American Mathematical Monthly, 52, (1945), 103-104.

SOLUTIONS
A Special Triangle Transversal
4102 [1943, 638]. Proposed by Hiiseyin Demir, Columbia University

Let O and I be respectively the circumcenter and incenter of a given tri-
angle ABC. Let Ao, By, Co be points taken respectively on BC, CA, AB so that
the sums of the algebraic distances of each point to two other sides are equal to
a given length I. Prove synthetically that: (1) The points 4, By, Co are collinear;
(2) The sum of distances to the sides of ABC of points on 4,B,C; is the con-
stant I; (3) the line 4,BoC, is perpendicular to the line OI.

Solution by the Proposer. (1) The locus of points whose sum of distances to
the sides CA, AB is [, is a straight line passing through 4,, and perpendicular
to AI. Let B., C; be points where this locus cuts CA4, 4 B. Similarly we consider
two other loci corresponding to By, Co. Let A’B’C’ be the triangle formed by
these three loci. We shall prove that the last triangle is in perspective with ABC,
I being the center of perspective. This is obvious, because since A’ is the inter-
section of two loci, its distances to CA, AB are equal, that is, 4’ belongs to AI.
Similarly B’, C’ belong respectively to BI, CI. Thus applying Desargue’s the-
orem we have collinearity of 4q, B, Co.

(2) Let M be a point of 4,B,C, with %, ¥, 2 its distances to BC, CA, AB. We
shall prove that x+y-+2z=I. Consider the locus of points with y+2=Cst. This
locus MQ (see figure) is parallel to B.Cs, and QQ,=y42. Now, G, A5 having
equal distances ! to CA (see (1)) what we have to prove is that QQ;=x. Draw
MP parallel to BC, then x=MX =PP,. Since A’4, is the bisector of 4,4:C;,
we have x=PP,=PP,. It remains to prove that QP|| Cs4s. This is true because
the two triangles QMP, CyA¢4; have two sides parallel, namely QM, Cy4, and
MP, AyA, and they are in perspective, with Co as center of perspective. There-
fore their third sides QP, Cud: must be parallel, that is x = PP;=Q(Qs.

(3) We shall prove two things: (a)—A:BsCs is the radical axis of circles
(ABC) and (4’B’C’). (b)—The center O’ of (4’B’C’) lies on OI, thus property
(2) will be proved.

(a)—For, observe the relation C,4:CoB=CoA’ -CoB’. This is true be-
cause the quadrilateral ABB’A’ is cyclic. (Note the equality of angles
AyB'B=A'AB=%A). Thus C, has equal powers with respect to the two circles.
A similar property holds for 4,, B,.

(b)—To prove that O’ belongs to OI we shall remark that the locus of O’
is a straight line when A’B’C’, whose sides are perpendicular to AI, BI, CI,
varies, and since A’B’C’ is always in perspective with ABC, with I the center
of perspective, O’ will describe a straight line passing through I. It also passes
through O. For, let A’ be taken at the point where AI meets the circle (4BC).
It is easy to see that B’, C’ will be similar points on the same circle. Thus 0’,
the center of (4’B’C’), coincides with O, the center of (4ABC). Therefore the
radical axis 4,BoCo of (ABC) and (A’B'C’) is perpendicular to the line OI
passing through the centers O and 0.

Editorial Note. The first two theorems follow from similar triangles. The
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case of an isosceles 4 BC may be discarded. For, if say the sides AB, 4C have
equal lengths, then in consequence of symmetry about AI the same is true for
ABy, ACy, By and C, being respectively on AC and AB. It then follows that
By (o is perpendicular to OI; the converse is true as well as parts (1) and (2),
but A, has an exceptional position. The points Ay, By, Cy are uniquely deter-
mined by the given constant . The distances x;, ¥, 2 for B, are such that
y5=0, xs+2=1, efc. Let P be a point on the straight line of CoB, and let it
divide this segment in the ratio A:1. Then we have

A+Dx=x+M, A+Dy=3, Q+1)z=2rz,

where x, y, z are the distances for P. By addition we have

ANF+DE4+y+2) = +5) +Noww +2) = N+ 1)];

and, if P is a finite point x+y-+2z=1. The straight line CoB, meets BC in a finite
point for which x,=0 and y.+2,=1/; hence this point is 4,. The two straight
lines A0BoC, for different values of ! are parallel; for, if they meet in a finite
point, this point would have the sum of its distances equal to two different
values. If P is a point not on BoCo the line through it parallel to the latter
meets the two sides in points different from By, and Co. Hence the sum of its
distances must be different from /; and this proves that the locus of points for
a given [ is the straight line 4,B,C, for that value of ..

In the special case where A’B’C’ is inscribed in (O) the polar of Co passes
through (4A4’, BB') =1, similarly, the polar of B, passes through I. Hence the
polar B,C, of I is perpendicular to OI.




2. SOLUTIONS OF ADVANCED PROBLEM FOR MONTHLY

Solution to Problem 4125:
American Mathematical Monthly, 52, (1945), 523.

Trigonometric Determinants

4125 [1944, 352]. Proposed by Hiiseyin Demir, Columbia University

Prove that
sin 8y — e~ 0 0 ---0 0
sin 0 el — gif2 0 0 0
sin 03 0 efr  — gmilz... 0 0 = sin (6, + 0+ - - - + 0n).
sinf, 0 0 0 sl gitn

Solution by Mary L. Boas, Tufts College. Put each sin 0 = (e?*—e~%)/2i and
remove the factor 1/27 outside the determinant. Subtract from each element of
the first column the sum of all the other elements in its row. The determinant
then becomes

eﬂh —_— p—i0y 0 2. O 0
1 0 effz — g—if2...( 0
2_'i- . . . . .
0 0 0 .« o gifn—1  — p—ifn—1
— 0 0 =:50 eifn

Expand by elements of the first column. The minor of eif is gi(f2+03+ -+ gince
all elements below the main diagonal of this minor are zero. The minor of —e—i»
is (—1)n—le~i(0rtla+- - +0n-1 since all elements above its main diagonal are zero.
Therefore the determinant equals

% [eitortort - +0s) — g—iCOrtozt - +0m)] = gin (6, + O3 + « - - + 6,).
1
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Solved also by E. F. Allen, Murray Barbour, C. B. Barker, Jr., Shepard
Bartnoff, R. P. Boas, Jr., Mrs. R. C. Buck, Howard Eves, Clifford Gardner,
P. C. Hammer, R. Hamming, J. F. Hofmann, L. M. Kelly, E. Lukacs, Norman
Miller, Henry Nelson, Ivan Niven, H. N. Shapiro, Robert Steinberg, R. H.
Wilson, Jr., and the proposer.

Editorial Note. About half of the solutions used induction proofs and about
the same number used simple determinant transformations without induction.
Hammer considered the transformation of the determinant and its value by
replacing 0; by /2 —0; which gives after reduction a determinant with a; =cos 0;
in the first column and the principal diagonal cos 6;, e~#%2, ¢~i%, . . . and the
parallel above it e, e, ¢i%, . . . with zeros in the remaining places. He found
for the value of the determinant cos D_0; if # is odd, and —1 sin D_0; if # is even.
A simpler procedure is to make the same change in the first column but to alter
the principal diagonal to cos 6, —ei%, —eifs . .. —¢if and leave the rest of
the original determinant unaltered. The value of this determinant is the same
as that for Hammer's determinant.

Solution to Problem 4134:
American Mathematical Monthly, 52, (1945), 587.

Angle Trisection

4134 [1944, 475]. Proposed by Hiiseyin Demir, Columbia University

Let CiC;C; be the inscribed triangle of a reference triangle 414243, and
CiC3C; be that of CiC;C;, and so on, obtaining a triangle CrCyCy after n steps.
Denoting the angles of the nth triangle by C%, prove that

1. (C3—7/3)(As—7/3)=(—1)"2"~

2. The limit of the direction of C;C; as n— <, is the direction of one of the
trisectrices of the angle (4243, C;C3), and from that observe a method of tri-
secting an angle by ruler and compass in infinitely many steps.

Solution by Howard Eves, College of Puget Sound. 1. Designating the incenter
of A14:43by I we have C3IChs =2C;}. Therefore 4;+42C} ==. Similarly, 4,4 2C}!
=7, Oor

1

(Ci= 2/3)/(ds = x/3) = = 2,

By the same process
Ci—x/3)/C —x/3) = -2 7 i=2-,m
By multiplication we then get
Ci— =/3)/(4i = 7/3) = (= D)2

2. Now
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lim [angle (4545, CiC5)] = 3 angle (Ci" C 2 C'Cy), where C;= A,

fn—w n=1
— Z ( C:n—l _ C‘;’n)

2n—1

[y = #/3) — (C1" — 7/3)]

[ 2214y — 7/3) — 2734, — 7/3)],

by the relations of part 1 above. The infinite sum on the right reduces to

L]

2 [r — Ay — 245]27% = (4 - As)f: 27 = §(4s — 4y) = %(Az 7 A’):

1 2
= ®Bs = 7/3) - §(ds = =/3)]
= @) |[- (2= 7/3) + (Cs — 7/3)]
= (3)(Cs — C2) = (3) angle (4245, C:Cy).

This establishes part 2. The method suggested here for asymptotically obtaining
one of the angle trisectors of a given acute angle (4243, C3C;) is apparent. It is
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needless to say, however, that there are many better euclidean asymptotic con-
structions for trisecting an angle.
Solved also by the proposer.

Editorial Note. Below are some references to this MONTHLY regarding approxi-
mate methods of angle trisection with limits for the error:

1932, 478, Angle Division, article by E. C. Kennedy; 2972 [1925, 95]; 3114
[1925, 483]; 3522 [1933, 303]; 3563 [1934, 113]; The method of Pappus using
conics 3490 [1932, 243].

Solution to Problem 4193:
American Mathematical Monthly, 54, (1947), 349.

_Concurrent Lines in a Pentagon
4193 [1946, 160]. Proposed by Hiiseyin Demir, Columbia University

If on the sides of an arbitrary pentagon 414,434 445 the triangles B;A ;124 i43
(with indices reduced mod 5) are constructed such that By4,-+2”A,A.-+1, and
BiAis||Aidiys, then the lines 4;B; concur in a point C.

Solution by J. W. Clawson, Ursinus College, Collegeville, Pennsylvania. Take
the triangle 414,44 as the triangle of reference for a system of homogeneous
trilinear coérdinates. Let 4, be (1, 0, 0), 4, (0, 1, 0,), 45 (d, ¢, f), A4 (0, 0, 1),
A (k, 1, m).

Then the equations of the line through A; parallel to 414, and of the line
through A4, parallel to 4145 are

afx + bfy — (ad + be)z = 0, alx 4+ (bl + em)y = 0.
Thus By has the coérdinates
(b1 + om)(ad + be),  — al(ad + be),  acm;
and the equation of 4.B; is
cfmy + l(ad + be)z = 0.
In the same way the equations of 4,B; and 4 B, are found to be
cfmx + d(ak + bl)z = 0, l(ad + be)x — d(ak + bl)y = 0.

These three lines are easily seen to be concurrent in a point C which has the

coodrdinates
d(ak + bl), I(ad + be), — ¢fm.

Using the triangles 41434 4 and 4,4 .45 we can prove in the same way that
A3Bs and AsB; also pass through the point C.
Solved also by the Proposer.

Editorial Note. Clawson gave a second proof using the converse of Ceva's
Theorem. The Proposer employed the pencils of lines 4383, 4 4B, formed when
the side 4,45 rotates about 43, other sides remaining fixed; since the correspond-
ence between A3B; and 4 4B, is homographic, the locus of the intersection C of
the rays A3Bs, A 4By is a conic; this conic decomposes into A1B; and 4344, thus
giving the proof.
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Solution to Problem 4215:
American Mathematical Monthly, 55, (1948), 34.

Hermite Polynomials
4215 [1946, 470]. Proposed by Hiiseyin Demir, Columbia University

Prove that the Hermite polynomials defined as follows

H,(x) = (— 1)7e="2 e 12
dx®

have the property
2
t Hy(x)

nIE

p=0

= Hap1(x) — Ho(2) Hupa(2).

Solution by Hsien-yii Hsii Yenching University, Peiping, China. In Polya-
Szegs, Aufgaben und Lehrsitze 11, pp. 294-295, Hermite polynomials are de-
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fined as follows

1 , a° 5
ho(x) = — e*12 e~ 12,
n! dx™
and satisfy the difference equation
nha(x) = — xhp1(x) — ho_2(%), n=223-:--.

We notice that
H, = H,(x) = (— 1)™n!h.(x),
whence the difference equation is
(1) H,=2xH, 1 — (n— 1)H,_,, n=23--
Upon eliminating x from this equation and the analogous equations for H,

and H,,» we obtain immediately

Hoyi — HuHoys = n(Ha — HopyHo ) + Hi

= n(n — 1)(Ho-r — HoHns) + nHoy + H,

1 1 1
- n:{(Hf— H:Hy) +TIH§+51—H:+--- +—-—1H,‘}

n'

= nl 3 Hy/p),
p=0
since Hi—H,H,=1.

Solved also by F. E. Cothran, A. B. Farnell, L. M. Kelly, Norman Miller,
S. T. Parker, W. A. Pierce, W. H. Spragens, M. S. Webster, M. Wyman, Pro-
fessor Otto Szész's class, and the Proposer.

Editorial Note. Several solvers mentioned that equation (1) of the above
solution is found in Dunham Jackson, Fourier Series and Orthogonal Poly-
nomials, p. 176, fi. The solution by members of Professor Szdsz’'s class in
Orthogonal Developments proceeds from the (so-called) Christoffel’s formula

i H,(x)H,,(y) _ Hn-i—l(x)Hn(y) - Hn(x)Hﬂ-H(y) .
=0 p! nl(x — )

See Szegd, Orthogonal Polynomials, p. 102. Webster's solution employs the rela-
tion

H,(x)H(x) = n!zﬂ:( " )Hm—”h tm 2 n),

r=0 \H — 7 r!

established by E. Feldheim, Journal of the London Mathematical Society, 1938,
pp. 22-29.
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Solution to Problem 4679:
American Mathematical Monthly, 63, (1956), 191.

Ten Concyclic Orthopoles
4679 [1956, 191]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

If A1A,A34,445 is a cyclic pentagon and if Q;; denotes the orthopole of the
line 4;A4; with respect to the triangle formed by the remaining three vertices,
then prove that the ten points {; all lie on a circle.

Solution by Chih-yi Wang, University of Minnesota. We make use of the
following known

THEOREM. If a line meets the circumcircle of a triangle, the Simson lines of the
points of intersection with the circle meet in the orthopole of the line for the triangle.
(See Court, College Geometry, 2nd ed., p. 289.)

Let the circumcircle 414,434 445 be the unit circle, and the coordinates of
A;be (cos b, sin8;),i=1,2, - - -, 5. For definiteness let us find the coordinates
of Q5. The equations of the Simson lines of 4; and of 4, are given by

y — 4(sin 0; + sin 63 4 sin ;) = § sin (63 + 04 — 0;)

= tan 3(0; + 04 + 05 — 0,) [x — 3(cos 05 + cos 05 + cos8;) + % cos (85 + 05 — 6,)],
for j=1, 2. By solving the simultaneous equations we obtain
Qe = (e + §cos (05 + 0+ 05 — 0, — 03), B+ 3sin (034 04+ 05 — 0, — 0s)),

where a=%z cos By, B=%E sinfy, k=1, 2, - -+, 5. Since @ and B are sym-
metric functions, by interchanging the subscripts we see readily that the ten
points £;; all lie on the circle of radius 3 with center (e, ).

Also solved by J. W. Clawson, R. Goormaghtigh, O. J. Ramler, Sister M. Stephanie, and the
proposer.

Editorial Note. Goormaghtigh gave this theorem in Mathesis, 1939, p. 312. Ramler gives an
extension to the cyclic heptagon. If Q;;; denotes the Kantor point of a triangle 4:4 ;4 with respect
to the quadrangle formed by the remaining four vertices, then the thirty-five points Q. all lie ona
circle one-half as large as the circumcircle of the heptagon.

Solution to Problem 4695:
American Mathematical Monthly, 64, (1957), 437.

Simson Line and Euler Line
4695 [1956, 426]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that if in a cyclic quadrangle the Simson line of one vertex with re-
spect to the triangle formed by the other three is perpendicular to the Euler
line of that triangle, then the same property holds for the other vertices of the
quadrangle.

Solution by Sister M. Stephanie, Georgian Court College, Lakewood, N. J. Using
complex coordinates and taking the circle to be the unit circle, let the vertices
of the quadrangle be #1, ¢, 3, ta, | £:| =1. The Simson line of #, with respect to the
triangle formed by /s, f3, ts, has the equation
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2 3 2
2512 o 251332 + S3 + 1152 — by — I1i51 = 0,

where s1, 52 and s;3 are the elementary symmetric functions of #, £ and #. The
Euler line of triangle f2, #3, 4 has the equation s,z —s1532 =0. If the two lines are
perpendicular, one clinant is the negative of the other, whence s3/t; = — 5153/532,
or upon simplifying, tifs+tifs+tits+tats+tats+tsts = 0. The symmetry of this result
guarantees that the property holds equally for any vertex.

Also solved by J. W. Clawson, G. W. Courter, R. Deaux, Beckham Martin, O. J. Ramler,
Robert Sibson, Chih-yi Wang, and the proposer.

Solution to Problem 4710:
American Mathematical Monthly, 64, (1957), 601.

Isotomic Lines
4710 [1956, 669]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that if in a complete quadrangle inscribed in a circle (O) one pair of
opposite sides are isotomic lines with respect to a triangle inscribed in (O), then
the remaining pairs of opposite sides are also isotomic lines with respect to the
same triangle.

I. Solution by O. J. Ramler, Catholic University of America. Using a system
of conjugate coordinates we take the circle (O) as the unit circle, and on it points
whose vector coordinates are T3, T, T as the inscribed triangle and 4, #s, &3, L4
as the inscribed complete quadrangle. Then the line f; intersects the side 71573
of the triangle in a point whose vector coordinate is

. ToT3(ts + t3) — (T2 + Ts)tats
TsTs — ialy

Similarly tts meets side 7213 where

- ToT3(ts + 1) — (T2 + Ts)tits
ToT3 — tils

2

The hypothesis implies T3—z=2—T; which becomes, upon making proper
substitutions and simplifying

ToTs(Ts + Ts — s1) + ToTass — (Ts + Ta)se = 0,

where s, 53, 54 are elementary symmetric functions of #y, fs, t3, 4. The symmetry
of this result establishes the proposed theorem.

I1. Solution by Roland Deaux, Faculté Polytechnique, Mons, Belgium. Circle
(0) may be replaced by any conic I. Let ABC and PQRS be the triangle and
the quadrangle inscribed in I'. By virtue of Desargues’ theorem, the four conics
T, (PQ, RS), (PR, QS), (PS, QR) determine on each side of ABC four pairs of
an involution. This involution, defined by I' and the isotomic lines PQ, RS, has
for double points the midpoint and the point at infinity of the side. Hence the
property.

Alsosolved by J. W. Clawson, N. A. Court, R. Goormaghtigh, Josef Langr, and the proposer.
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Solution to Problem 4735:
American Mathematical Monthly, 65, (1958), 128.

Concurrent Lines
4735 [1957, 277]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let A1A3A434,4 5 be a simple 5-point plane figure, and let d be any line in the
plane of the figure. Let the common point of the line d and the side a; opposite
to A; be denoted by B;, and the common point of the lines 4;B;;1, BiA i1 by
Ciy3. Then the five lines 4;C; have a point D in common.

Solution by E. J. F. Primrose, The University, Leicester, England. There is a
unique polarity P for which each 4; is the pole of the opposite side a; (Coxeter,
The Real Projective Plane, 5.65). We consider the 4-point A;C1B3;B,. The pole
of A1B; for P is A3, so A1B; and CiB4 are conjugate lines, and similarly 4,B4
and CiB; are conjugate lines. By the dual of Hesse’s theorem (Coxeter, 5.55),
A:Cy and B;B, are conjugate lines, so A:C; passes through D, the pole of d for
P. By a similar argument, all the lines 4;C; pass through D.

Also solved by W. B. Carver, J. W, Clawson, R. Deaux, and the proposer.

Solution to Problem 4818:
American Mathematical Monthly, 66, (1959), 732.

A Property of the Miquel Circle of a Complete Quadrilateral
4818 [1958, 779]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let d; be the sides of a complete quadrilateral, and 4;; be the vertex on
d;, d;. Let t; be the triangle formed by the sides other than d;, and (0;) denote
the circumcircle of #;. Denote the Simson line of a point S; of (0,;) with respect
to ¢; by D..

Then prove that, if D; and d; are parallel for all 4, (1) the line S;0, passes
through the vertex 4, (¢, p#=gq, ), and (2) the points S; all lie on the Miquel
circle (0).

Solution by the proposer. (1) Let the projections of S; and O, on d, be denoted
by Ui, Vyr. Then, using directed angles, we have
LV pO0pAgy = L AirAgiAy (from the circle (0,)),
= X UuUiAy (since D; is parallel to dy),
= X US;Aqr. (from the circle S;U A4, Usy).

15
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Now, since 0,V,, is parallel to S;Ui, we get the required collinearity of S;,
[0 S (-

(2) Since the line of centers 0,0, is perpendicular to the radical axis FA4 p,,
where F is the Miquel point, we have successively

X 00,0, = & AguF Ay,
= < A5l (from the circle (0,)),
= X Ay ApgApr,
= X ApSiApr (from the circle (0,)),
= L 0,50, (from property (1)),

and S; lies on the Miquel circle (0).
Also solved by A. E. Landry.




3 [Elementary Problems for MONTHLY |

List of Elementary Problems:

Elementary Problem 1134, American Mathematical Monthly, 61, (1954), 568.
E 1134. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that a square integer is not a perfect number.

17



18 3. ELEMENTARY PROBLEMS FOR MONTHLY

Elementary Problem 1160, American Mathematical Monthly, 62, (1955), 182.

E 1160. Proposed by Hiiseyin Dewmir, Zonguldak, Turkey

Prove that in a complete quadrilateral the isotomic line of any side with
respect to the triangle formed by the other three is parallel to the Newton line
of the quadrilateral.

Elementary Problem 1197, American Mathematical Monthly, 63, (1956), 39.

E 1197. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let ABC be a right triangle and CH the altitude on the hypotenuse 4B.
Show that the sum of the radii of the inscribed circles of triangles ABC, HCA,
HCB is equal to CH.

Elementary Problem 1209, American Mathematical Monthly, 63, (1956), 186.

E 1209. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let ABC be any triangle and (I) its incircle. Let (I) touch BC, C4, AB at
D, E, F, and intersect the cevians BE, CF at E’, F’ respectively. Show that the
anharmonic ratio D(E, F, E’, F’') is the same for all triangles 4 BC.

Elementary Problem 1217, American Mathematical Monthly, 63, (1956), 342.
E 1217. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Evaluate
I d¢criar+ear,

din
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Elementary Problem 1778, American Mathematical Monthly, 72, (1965), 420.

E 1778. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey

If R, 7, 1, 73, 73 are the circumradius, inradius and exradii of a triangle, prove
that

Elementary Problem 1779, American Mathematical Monthly, 72, (1965), 420.

E 1779. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey

If h; and 7; are the altitudes and exradii of a triangle prove that

Elementary Problem 1877, American Mathematical Monthly, 73, (1966), 410.

E 1877. Proposed by Huseyin Demir, Middle East Technical University,
Ankara
LLet ABCDE be a convex pentagon inscribed in a unit circle with AE as

diameter, and let AB=a, BC=b, CD=¢, DE=d. Then prove that
a4+ b2+ 2+ d® + abec + bed < 4.

Elementary Problem 1878, American Mathematical Monthly, 73, (1966), 410.

E 1878. Proposed by Huseyin Demir, Middle East Technical University,
Ankara

Let A14; - - - A, be a regular polygon inscribed in circle (O) of radius R.
Denote the incenter of the triangle 4; 144 .41 (indices mod #) by I;, and that

of the triangle formed by A4;4 2, Aiy24 i1, Aiy14 i3 by Ji. Then show that the
points Iy, - - -, I, and Jy, - - -, J, all lie on the same circle of radius R’
=R cos (37/2n)/cos (w/2n).
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Elementary Problem 2100, American Mathematical Monthly, 75, (1968), 670.
E 2100. Proposed by H. Demir, Middle East Technological University, Ankara,
Turkey
Show that any five of the relations

x — a4 a—b x—b b—c x—c¢ Cc—a
(1) = ) (2) = ) (3) = ,
@y — s b—c¢ b — by ¢—a €1 —¢a a—25b
(4) x4+ a = b+ ¢, (5) x4+ b =ca+ ay, (6) x+¢=a+ b

imply the sixth. Interpret this set of consistent relations geometrically letting
a, b, ¢ be the affixes, in the complex plane, of a triangle of reference A BC and

other numbers be those of other points.

Elementary Problem 2101, American Mathematical Monthly, 75, (1968), 670.

E 2101. Proposed by H. Demsr, Middle East Technological University, Ankara,
Turkey

ABC is a triangle. Let P, denote the parabola tangent to the sides 45,
AC at B, C respectively. The parabolas P, and P, are similarly defined. Let
these parabolas intersect to the points 4’, B’, C’ inside ABC. Denote the areas
of the (curvilinear) triangular regions ABC, A'B'C’, AB'C’, BC'A’, CA'B’,
A'BC, B'CA, C'AB, by A, Ao, Ad, ANy, AL, AT, A", A!7. Then prove

(1) /_\.a‘;’ =Ab’ =Ac’ = (Al); Aa” =AI::” = t;” = (A2)1
(2) Aot A1:A2: A=15:17:5:81.

Elementary Problem 2109, American Mathematical Monthly, 75, (1968), 780.
E 2109. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey
Let ABC be a triangle and A’ be any fixed point on the side BC. Construct
the inscribed triangle A’B’'C’ which is directly similar to a given triangle X VZ.

Elementary Problem 2110, American Mathematical Monthly, 75, (1968), 780.

E 2110. Proposed by Hiiseyin Demir, Middle East Technical University,

Ankara, Turkey
If, in a plane, the triangles AUV, VBU, UVC are directly similar to a given

triangle, then so is ABC.
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Elementary Problem 2124, American Mathematical Monthly, 75, (1968), 899.

E 2124. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey

Construct on the sides BC, C4, AB of a triangle A BC, exteriorly, the squares
BCDE, ACFG, BAHK and build the parallelograms FCDQ, EBKP. Show that
APQ is an isosceles right triangle.

21

Elementary Problem 2160, American Mathematical Monthly, 76, (1969), 300.

E 2160. Proposed by Hiiseyin Demir, Middle East Technical Unaiversity,
Ankara, Turkey

Let pq, x; be the distances of an interior or a boundary point P of a triangle
A14:43 from the vertex A; and the side opposite to 4;, =1, 2, 3, with r the
inradius. Prove the inequalities

3 3 3
(a) S pidsin 4) £ D x: £ D pisin(E4y).
=1 f==] =1
(b) Pz?s + Psﬁl e 5 ;P1P2 é 8x1x2x3/r.

Elementary Problem 2213, American Mathematical Monthly, 77, (1970), 79.

E 2213. Propesed by H. Demir, Middle East Technical University, Ankara,
Turkey

Let us say that a (planar) polygon has the Nagel property if the lines through
the vertices of the polygon and bisecting the perimeter of the polygon are con-
current. It is known that all triangles have the Nagel Property and that not all
quadrilaterals have the property. Determine the simple nondegenerate quadri-
laterals that have the Nagel property.

Elementary Problem 2311, American Mathematical Monthly, 78, (1971), 793.

E 2311. Proposed by Huseyin Demir, Middle East Technical University,
Ankara, Turkey

Prove that, if a quadrilateral 414,434 4 can be inscribed in a circle, then the
(six) lines drawn from the midpoints of 4, 4 ;, perpendicular to 4, 4, (p, g, 7, s are
distinct) are concurrent.
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Elementary Problem 2312, American Mathematical Monthly, 78, (1971), 793.

E 2312. Proposed by Huseyin Demir, Middle East Technical University,
Ankara, Turkey

Let D be a point in the plane of a positively oriented triangle 4 BC and let
AD, BD, CD intersect the respective opposite sides in 4, By, Ci. If the oriented
segments BA;, CBi, AC; are equal (=9), then D is uniquely determined and lies
in the interior of 4 BC. (Notice the analogy between D and the Brocard point
Q.)

Elementary Problem 2363, American Mathematical Monthly, 79, (1972), 662.

E 2363. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey

Characterize pairs of spherical triangles ABC and A’B’C’ for which 4’ =a,
B =b,C'=c¢c,A=a’,B=b',C=".

Elementary Problem 2462, American Mathematical Monthly, 81, (1974), 281.

E 2462. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey

Let P be a point interior to the triangle 4,4,A4;. Denote by R; the distance
from P to the vertex A;, and denote by r; the distance from P to the side a; opposite
to A;. The Erdos-Mordell inequality asserts that

R, + R, + Ry 2 2(ry + 15 +13).

Prove that the above inequality holds for every point P in the plane of 4;4,A4,
when we make the interpretation R; = 0 always and r; is positive or negative depend-
ing on whether P and A; are on the same side of a; or on opposite sides.

Elementary Problem 2625, American Mathematical Monthly, 83, (1976), 812.
E 2625. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey

Let A; (i =0,1,2,3 (mod 4)) be four points on a circle I'. Let # be the tangent to " at A; and let p;
and g; be the lines parallel to £; passing through the points A;_, and A;.,, respectively. If B; = £ N f..,,
C = p. N gi+1, show that the four lines B:C; have a common point.
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Elementary Problem 3135, American Mathematical Monthly, 93, (1986), 215.
E 3135. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.

For a scalene triangle 4 BC inscribed in a circle, prove that there is a point D on the arc of the
circle opposite to some vertex whose distance from this vertex is the sum of its distances from the
other two vertices.

Show how D may be constructed with straightedge and compass.

Elementary Problem 3164, American Mathematical Monthly, 93, (1986), 566.

E 3164. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.

Let s, ¢ be the lengths of the tangent line segments to an ellipse from an exterior point. Find
the extreme values of the ratio s /7.

Elementary Problem 3422, American Mathematical Monthly, 98, (1991), 158.

E 3422. Proposed by H. Demir and C. Tezer, Middle East Technical University,
Ankara, Turkey.

Suppose F and F' are points situated symmetrically with respect to the center
of a given circle, and suppose § is a point on the circle not on the line FF'. Let P
and P’ be the second points of intersection of SF and SF' respectively with the
circle. If the tangents to the circle at P and P’ intersect at T, prove that the
perpendicular bisector of FF' passes through the midpoint of the line segment S7.

Elementary Problem 3469, American Mathematical Monthly, 98, (1991), 955.

E 3469. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Suppose P is a point in the interior of triangle ABC and suppose AP, BP,CP
meet the lines BC,CA, AB respectively at the points D, E, F. Prove that the
centroids of the six triangles PBD, PDC, PCE, PEA, PAF, PFB lie on a conic if
and only if P lies on at least one of the three medians of the triangle.
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Solution to Problem 1134:
American Mathematical Monthly, 62, (1955), 257.

Squares and Perfect Numbers

E 1134 [1954, 568]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that a square integer is not a perfect number.

I. Solution by C. F. Pinzka, Princeton, N. J. If N=IIp?* the sum of the
divisors of N is

p20+1 -1
p—1

Since the latter is always odd, it cannot equal 2N as required for a perfect
number. :

I1. Solution by C. D. Olds, San Jose State College. Euler proved that an odd
perfect number must have the form ##+1P2 where 7 is a prime of the form 4n-41.
An even perfect number must be of Euclid’s type, that is, of the form 27-1(27 —1)
where 27 —1 is a prime. Thus a square cannot be perfect.

25
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Solution to Problem 1160:
American Mathematical Monthly, 62, (1955), 658.

A Property of the Newton Line of a Complete Quadrilateral
E 1160 [1955, 182]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Prove that in a complete quadrilateral the isotomic line of any side with
respect to the triangle formed by the other three is parallel to the Newton line
of the quadrilateral.

I. Solution by the Proposer. Let d be one of the four sides of the quadrilateral
and let ABC be the corresponding triangle. Denote the intersections of d with
the sides BC, CA, AB of triangle ABC by «, 8, o. The isotomic line IJK of
ofy with respect to triangle 4 BC is obtained by taking the symmetrics I, J, K
of the points e, 8, v with respect to the midpoints 4’, B, C’ of the sides BC,
CA, AB of triangle ABC. Let the midpoints of Aa, BB, Cy be denoted by I’,
J’, K'. These points of the Newton line of the quadrilateral are evidently on the
sides of the medial triangle A’B’C’ of triangle ABC. It is easy to see that the
complete quadrilateral formed by triangle A BC and line IJK is similar to that
formed by triangle A’B’C’ and line I'J'K’, for, firstly, triangles ABC and
A’'B’C’ are similar, and are in the ratio 2:1, and secondly,

BI = Ca = 2(B'I'), AJ=CB=2(4"J"), AK = By = 2(4'K").
This proves that the lines IJK and I'J'K’ are parallel.

I1. Solution by Sister M. Stephanie, Georgian Court College, Lakewood, N.J.
Since there is one and only one parabola tangent to four lines, let us consider
the complete quadrilateral as tangent to the parabola (referred to rectangular
coordinates) y*=4ax. Then y=mx+a/mi, 1=1, 2, 3, 4, may be taken as the
equations of the four sides 1, 2, 3, 4 of the quadrilateral. Point

(a/mims, a/my + a/ms)

is the intersection of sides 1 and 2; other intersections are similarly given. The
midpoint of the side 2 of triangle 123 has coordinates

(a/2) [(my 4 ms) /mumama, 2/ma + 1/my + 1/ms].

If (x, ¥) is the point on side 2 isotomic to the intersection of side 4 with side 2,
then

vy + a/my + a/ms = 2a/my + a/my + a/ms,
whence
y = a(l/m; -|— 1/”22 + 1/??23 - 1/1?24),

a result which is symmetric in m;, ms, ms. This proves that the isotomic line of
side 4 with respect to triangle 123 is parallel to the axis of the parabola. But the
Newton line is also parallel to the axis of the parabola, for it is the locus of cen-
ters of all conics inscribed in the quadrilateral, and this locus contains the center
of the parabola.
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Solution to Problem 1197:
American Mathematical Monthly, 63, (1956), 493.
A Rich Configuration
E 1197 [1956, 39]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let ABC be a right triangle and CH the altitude on the hypotenuse 4 B.
Show that the sum of the radii of the inscribed circles of triangles ABC, HCA,
HCB is equal to CH.

Solution by Leon Bankoff, Los Angeles, Calif. 1. The diameter of the circle
inscribed in a right triangle is equal to the sum of the legs minus the hypotenuse.
Applying this relation in triangles ABC, HCA, HCB, we get

(AC+CB—AB)+ (AH+CH — AC)+ (CH+ HB—-CB)
3 =

CH.

II. In similar right triangles, the ratios of inradius to hypotenuse are equal.
We may therefore write

r/c=r/b=rfa= (r+ri+r)/(a+ b+ ),
where 7, 71, 73 are the inradii of triangles ABC, HCA, HCB. Since
r/c=CH/(a+ b+ c)
it follows that r+4r;+r.=CH.

Additional selected properties of the configuration. R, S, T are the incenters of
triangles AHC, CHB, ABC, respectively, and H, R’, S’, T’ the orthogonal pro-
jections of C, R, S, T on AB. Let 7, 71, 2 denote the inradii of triangles 4 BC,
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AHC, CHB. P and Q are the feet of the cevians CR and CS. RS cuts ACin U
and CB in V. K is the intersection of PS and RQ.

(1) T’ is the circumcenter of triangle RST; Q, S, T, R, P are concyclic;
2 =TI'=7"'0.

(2) T is the orthocenter of triangle CRS and the circumcenter of triangle
CPQ.

(3) A4ri=r2

(4) RS=CT=PT=QT=r/2.

(5) Triangles HSR, ABC, AHC, HCB are similar.

(6) A, R, S, B are concyclic. Triangles RST and ABT are inversely similar.

(7) R, T', H, S are concyclic. (RS is a diameter of the circle.)

(8) T'S is parallel to AC; RT" is parallel to CB.

(9) Triangles RR’T’ and T’S’S are congruent (and similar to triangle ABC).

(10) Triangles ATB, BCS, ARC are similar.

(11) Angle ATB=angle BSC=angle ARC=135°.

(12) AC=A4Q; PB=CB.

(13) CU=CYV; CT is the perpendicular bisector of UV.

(14) PS, RQ, CH are concurrent at K, the orthocenter of triangle CPQ.

(15) PSis parallel to AT; RQ is parallel to T'B; triangles PBS and CSB are
congruent; triangles AQR and ARC are congruent.

(16) The midpoint of RS is the nine point center of triangle CPQ.

(17) The circumcircle of triangle HSR is the nine point circle of triangle
CPQ.

(18) The circumcircles of triangles ARC and CSB are tangent at C, and CT
is their common internal tangent.

(19) RT=KS=SQ; RP=RK =TS, triangles PKR and KQ.S are isosceles
right triangles. (Also triangle R7”S.)

(20) A4, P, T, C are concyclic; B, Q, T, C are concyclic.

(21) The perimeter of triangle T’S’S=perimeter of triangle RR'T=CH
(since SS' =1y, T'S'=ry, T'S=7).

(22) Area of triangle RST = (a+b—c¢)3/8c=r3/c.

(23) Area of pentagon PQSTR=2r3/c+7r2

(24) Area of triangle CPQ=abr/c.

Also solved by W. A. Al-Salam, L. C. Barrett, Robert Bart, G. E. Bills,
R. L. Caskey, G. B. Charlesworth, N. A. Childress, T. Y. Chow, Mary Constable,
R. J. Cormier, K. W. Crain, A. E. Danese, D. E. D’Atri, G. W. Day, Hazel
Evans, Herta Freitag, Michael Goldberg, A. J. Goldman, Peter Gould, Cor-
nelius Groenewoud, D. J. Hansen, Vern Hoggatt, R. T. Hood, Roger Hou, J. P.
Hoyt, Raymond Huck, Louise Hutchinson, A. R. Hyde, P. W. M. John, Edgar
Karst, M. S. Klamkin, W. G. Koellner, Sam Kravitz, M. A. Laframboise, L. E.
Laird, B. R. Leeds, L. I. Lokomowitz, Robert Lynch, D. C. B. Marsh, Beckham
Martin, C. N. Mills, C. S. Ogilvy, Margaret Olmsted, M. J. Pascual, Walter
Penney, L. L. Pennisi and N. C. Scholomiti (jointly), C. F. Pinzka, P. W. A.
Raine, M. A. Rachid, L. A. Ringenberg, Azriel Rosenfeld, Donald Rubin, C. M.
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Sandwick, Sr., E. D. Schell, G. J. Simmons, Bernard Smilowitz, Sister M.
Stephanie, A. V. Sylwester, W. R. Talbot, Chih-yi Wang, R. M. Warten, Dale
Woods, Roscoe Woods, André Yandl, David Zeitlin, and the proposer. Late so-
lutions by Paul Herzberg and Alan Wayne.

It was pointed out that this problem appears in N. A. Court, College Geometry,
2nd ed., p. 93, ex. 19b, and in Scripta Mathematica, vol. 16 (1950), p. 167.

Solution to Problem 1209:
American Mathematical Monthly, 63, (1956), 186.

A Cross Ratio Associated with Any Triangle
E 1209 [1956, 186]. Proposed by Hiiseyin Demir, Zonguldak, Turkey

Let ABC be any triangle and () its incircle. Let (I) touch BC, CA, AB at
D, E, F, and intersect the cevians BE, CF at E’, F’' respectively. Show that the
anharmonic ratio D(E, F, E’, F’) is the same for all triangles ABC.

1. Solution by W. B. Carver, Cornell University. This is obviously a metrically
special case of a more general projective theorem. The incircle may be replaced
by any conic tangent to the sidesat D, E, F, with the conic cutting the lines BE
and CF at E’ and F’ respectively. By one of the limiting cases of Brianchon’s
theorem the lines AD, BE, CF meet in a point G. We set up a homogeneous
coordinate system with 4, B, C, G as the points (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 1) respectively. It then follows readily that D, E, F are the points (0, 1, 1),
(1,0,1), (1, 1, 0); the conic has the equation

2+ 92+ 5 — 2y — 23x — 22y = 0;

E’, F’ are the points (1, 4, 1), (1, 1, 4); the lines through D have the equations
kx+y—2z=0 with k=1, —1, =3, 3 for DE, DF, DE’, DF’ respectively; and the
required anharmonic ratio is therefore

1+ 3)(-1-3)/(1 — 3(—1+3) = 4

I1. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. By a central
projection, triangle ABC and its incircle (I) can be transformed into an equi-
lateral triangle and its incircle. The anharmonic ratio D(E, F, E’, F') is invariant
under this transformation and consequently is constant for all triangles. It is
easy to show that D(E, F, E’, F') =4.

Also solved by N. A. Court, P. W. M. John, D. C. B. Marsh, O. J. Ramler,
Roscoe Woods, and the proposer.
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Solution to Problem 1217:
American Mathematical Monthly, 64, (1957), 45.

A Property of Euler’s Function
E 1217 [1956, 342]. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Evaluate
[] asmia+e@,
din

Solution by J. B. Johnston, Cornell University. Let f be any function defined
on the integers. Then

[[ @@+ = T @r@ ] aremra

din d|n din
= [[#@ [ (n/d)yr@
din din
=[[we = ,,ezl:'.ﬂd).
dln
Since
(1) 2 %(d) = n,
dln

the answer to the given problem is n".

Also solved by W. J. Buckingham, Leonard Carlitz, A. E. Danese, M. P.
Drazin, L. T. Gardner, A. J. Goldman, D. S. Greenstein, Cornelius Groenewoud,
Emil Grosswald, Virginia Hanly, A. R. Hyde, Richard Kelisky, Sidney Kravitz,
R. G. McDermot, D. C. B. Marsh, Leo Moser, J. B. Muskat, F. R. Olson, Hiram
Paly, M. Perisastri, Azriel Rosenfeld, A. V. Sylwester, Chih-yi Wang, David
Zeitlin, and the proposer. Late solution by M. S. Klamkin.

Editorial Note. For a proof of (1) see, e.g., Uspensky and Heaslet, Elementary
Number Theory, p. 113. As another application of the general result established
above we have

H d(’lfd)-f-d = na'(n)’
dln

where () is the sum of the divisors of #.
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Solution to Problem 1778:
American Mathematical Monthly, 73, (1966), 667.
The Radii of a Triangle

E 1778 [1965, 420]. Proposed by Hiiseyin Demir, Middle East Technical
University, Ankara, Turkey

If R, r, r1, 73, r3 are the circumradius, inradius and exradii of a triangle,
prove that
1 1 1 1 12R

P B rrren

Solution by Ralph Schreiber, Warsaw High School, Warsaw, Ind. Denote by
A the area of triangle 4 BC, by s the semiperimeter, by r, the exradius corre-
sponding to side @, and so forth. We recall familiar identities:

A =15s=r,(s —a) = ry(s — b) = r.(s — ¢) = /rraryr. = abc/AR.
Thus

1 1 1 1 1
F‘—‘;;—‘;g—?=z—3[sa*(s—'a)3—(S—b)a—'(s—c)s]
a b [

= 3abc/A\® = 12R/ A2 = 12R/rr.737..

Also solved by A. N. Aheart, Leon Bankoff, W. J. Blundon, D. I. A. Cohen, Ragnar Dybvik
(Norway), Mrs. A. C. Garstang, Michael Goldberg, Louise S. Grinstein, D. M. Hancasky, E. S.
Langford, Ruth S. Lefkowitz, F. Leuenberger (Switzerland), Andrzej Makowski (Poland), D. C. B.
Marsh, F. R. Prieto, J. M. Quoniam (France), S. Bhaskara Rao (India), Simeon Reich (Israel),
P. A. Scheinok, Klaus Schmitt, R. Sivaramakrishnan (India), Sidney Spital, Sister M. Stephanie,
M. V. Tamhankar & M. B. Suryanarayana (India), Simon Vatriquant (Belgium), C. S. Venkatara-
man (India), William Wernick, and the proposer.
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Solution to Problem 1779:
American Mathematical Monthly, 73, (1966), 668.

The Altitudes and Exradii of a Triangle

E 1779 [1965, 420]. Proposed by Hiiseyin Demir, Middle East Technical
University, Ankara, Turkey

If h; and 7; are the altitudes and exradii of a triangle prove that

I. Solution by D. C. B. Marsh, Colorado School of Mines. Since 2/h;=1/r;
+1/r; for 4, j, k a cyclic permutation of 1, 2, 3 (R. A. Johnson, Modern Geom-
etry, p. 189; or use the identities in E 1778 above together with 1/7r=1/r1+1/r;
+1/r5) it follows immediately that . (ri/hd) =32 ix; (r:/7;) =3(6) =3, since
(x/y)+(v/x) =2 for positive x, y. Moreover, equality obtains only if r; =ry =73,
i.e., the triangle is equilateral.

II. Solution by H. Guggenheimer, University of Minnesota. We may generalize
by securing the inequality Y. (ri/hs)"=3, n=1. Actually more is true: Let ¢;
be the lengths of the angle bisectors of the triangle. Since ¢; = %, the proposed

inequality is weaker than
3 75 m
b3 (-*) 23 m >0
=1 \ I

which we now prove.

Let s be the semiperimeter of the triangle, a; the sides. Leuenberger has
proved (Elemente Math., 17 (1962) 45-46; see also 16 (1961) p. 129) that
t: < [s(s—a;)]*/% Hence

2 (ﬁ)m 5 ¥, I:‘(s —a;)(s — ak)]mm

t; i ik S(.S‘ - a")z

1
- 3 [ — a)(s — @

[(s — @) (s — a2)(s — ag)]™

The desired result now follows from the geometric-arithmetic mean inequality,
and again equality holds only for the equilateral triangle.

Also solved by A. N. Aheart, Leon Bankoff, W. J. Blundon, D. I. A. Cohen, Mrs. A, C.
Garstang, Michael Goldberg, H. Guggenheimer, D. M. Hancasky, E. S. Langford, F. Leuenberger
(Switzerland), Andrzej Makowski (Poland), F. R. Prieto, J. M. Quoniam (France), S. Bhaskara
Rao (India), Simeon Reich (Israel), P. A. Scheinok, Ralph Schreiber, R. Sivaramakrishnan (India),
Sidney Spital, Sister M. Stephanie, M. V. Tamhankar & M. B. Suryanarayana (India), P. D.
Thomas, Simon Vatriquant (Belgium), C. S. Venkataraman (India), and the proposer.

Makowski’s student, Tadeusz Figiel observed that the required inequality is equivalent to the
fact that the area of an orthic triangle is not greater than one-quarter of the area of a given
(acute-angled) triangle. [Proof: Let ABC be an orthic triangle of 41B:Ci. Then 4,, By, G are the
centers of ex-circles and the ratio of areas of ABC; and ABC is equal to the ratio of altitudes on
the common side 4B, i.e., r3/h. ]
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Solution to Problem 1877:
American Mathematical Monthly, 74, (1967), 869.

Convex Pentagon Inscribed in a Semicircle

E 1877 [1966, 410]. Proposed by Huseyin Demir, Middle East Technical
Unaiversity, Ankara, Turkey

Let ABCDE be a convex pentagon inscribed in a unit circle with AE as
diameter, and let AB=a, BC=b, CD=¢, DE=d. Then prove that

a4+ b% + ¢ + d* + abe + bed < 4.

Solution by Allan Wachs, Student at Far Rockaway (N. Y.) High School.
Draw AC and CE and put 8= X CEA. Then XCAE=90°—0, L CBA =180°—4,
XCDE=180°—(90°—0) =90°+0. By the law of cosines,

(1) AC? = a®> 4 b? — 2ab cos (180° — 8) = a® + b2 + 2ab cos b,
(2) CE? = ¢+ d? — 2¢d cos (90° 4+ 6) = ¢2 4 d* + 2¢cd sin 6.

From the right triangle ACE, AC*+CE?=AE?=4, also AC=2 sin 6>) and
CE=2 cos §>c (because of the obtuse angles). Substitution of these results
into the sum of (1) and (2) gives at once

4 > a? 4 b+ ¢ + d* 1 abec + bed.

Also solved by Leon Bankoff, W. J. Blundon, L. Carlitz, Mannis Charosh, M. A. Ettrick,
Michael Goldberg, M. G. Greening (Australia), Ned Harrell, Donald Jeffords, Erwin Just, J. D. E.
Konhauser, Dan Marcus, Lieselotte Miller, Norman Miller, C. B. A. Peck, Al Somoyajuly, J. L.
Standig, C. S. Venkataraman (India), J. C. Williams, Dale Woods, and the proposer.
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Solution to Problem 1878:
American Mathematical Monthly, 74, (1967), 869.

Convex Pentagon Inscribed in a Semicircle

E 1877 [1966, 410]. Proposed by Huseyin Demir, Middle East Technical
Unaiversity, Ankara, Turkey

Let ABCDE be a convex pentagon inscribed in a unit circle with 4E as
diameter, and let AB=a, BC=b, CD=¢, DE=d. Then prove that

a®+ 0%+ ¢ + d? + abc + bed < 4.

Solution by Allan Wachs, Student at Far Rockaway (N. Y.) High School.
Draw AC and CE and put 8= X CEA. Then XCAE=90°—0, <X CBA =180°—4,
XCDE=180°—(90°—0) =90°+6. By the law of cosines,

(1) AC? = g + b? — 2ab cos (180° — ) = a® + b2 + 2ab cos 6,
(2) CE? = ¢+ d% — 2¢d cos (90° 4+ 60) = ¢ + d? + 2cd sin 6.

From the right triangle ACE, AC*+CE?=AE?=4, also AC=2 sin §>b and
CE=2 cos 0>c¢ (because of the obtuse angles). Substitution of these results
into the sum of (1) and (2) gives at once

4> a?+ b2+ 2+ d* + abc + bed.

Also solved by Leon Bankoff, W. J. Blundon, L. Carlitz, Mannis Charosh, M. A. Ettrick,
Michael Goldberg, M. G. Greening (Australia), Ned Harrell, Donald Jeffords, Erwin Just, J. D. E.
Konhauser, Dan Marcus, Lieselotte Miller, Norman Miller, C. B. A. Peck, Al Somoyajulu, J. L.
Standig, C. S. Venkataraman (India), J. C. Williams, Dale Woods, and the proposer.
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Solution to Problem 2100:
American Mathematical Monthly, 76, (1969), 563.

Six Relations

E 2100 [1968, 670]. Proposed by H. Demir, Middle East Technological Uni-
versity, Ankara, Turkey

Show that any five of the relations

x— a—> x — by b—c¢ x— € c—a

(2) = ) =

1 =

() bl—bg c— a 1 — &2 G—b’

4) x4+ a=bs+ ¢, B) x+b=cs+ ay, 6) x+c=as+ b
imply the sixth. Interpret this set of consistent relations geometrically letting

a, b, ¢ be the affixes, in the complex plane, of a triangle of reference ABC and
other numbers be those of other points.

el b
a—as b—c¢

Solution by Michael Goldberg, Washington, D. C. Take any triangle, repre-
sented by the vertices a, b, ¢. Take any point x in the plane of the triangle. Draw
parallels to the sides of the triangle through the point x. Let the intersections of
these parallels with the sides be aj, a3, b1, bs, c1, €2, as shown in the figure. Then
the six given relations hold. If one of the six points, say cs, is omitted, then x

a

ba

can be found as the intersection of asc; with bea;, and then ¢; is determined as
the intersection of b;x with ab.

Also solved by A. F. Gentzel, Jr., Simeon Reich (Israel), and the proposer.
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Solution to Problem 2101:
American Mathematical Monthly, 76, (1969), 564.

Three Parabolas and a Triangle

E 2101 [1968, 670]. Proposed by H. Demir, Middle East Technological Uni-
versity, Ankara, Turkey

ABC is a triangle. Let P, denote the parabola tangent to the sides 4B, AC
at B, C respectively. The parabolas P, and P, are similarly defined. Let these
parabolas intersect at the points 4’, B’, C’ inside ABC. Denote the areas of the
(curvilinear) triangular regions ABC, A’B'C’, AB'C’, BC'A’, CA'B', A'BC,
B'CA, C'AB by A, Ao, AL, AY, A, A]', A, A!”. Then prove

(1) A=Ay = Al(=4y), A=Ay = A (=A4y),
(2) DotAgiAg:A = 15:17:5:81.

Solution by the proposer. Under parallel projections the nature of conics, the
tangency and ratios of segments and areas are invariant, and any triangle can
be transformed into an equilateral triangle, Hence it will suffice to prove the
assertion for an equilateral triangle. So, part (1) is already proved.

To prove (2), let ABC be an equilateral triangle located in the coordinate
plane such that 4 =(1, v/3), B=(0, 0), C=(2, 0). The equations of parabolas
P, and P, are found to be

(1) P,: y = (z — 3293,

2) Pe: A/3 32+ 6y + 34392 — 16y = 0.

From (1) and (2) we obtain

3) Ao+ 24 + Ay = \/Ef (x — 32?)dx = 31/3 = 24,
(4) y=§¥—?x—%/§\/4—-3x 0=x=%).

We find, therefore,

1 543 5
; Y .. TN
G) ? T e T w
with

(6) Ao + 3A; + 34, = A.

Solving the system (3), (5), (6) for Ay, Ay, A,, we get the required result.

Also solved by Anders Bager (Denmark), Jordi Dou (Spain), Michael Goldberg, M. G.
Greening (Australia), Norman Miller, J. M. Quoniam (France), and A. Zujus.
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Solution to Problem 2109:
American Mathematical Monthly, 76, (1969), 698.

Triangle Construction

E 2109 [1968, 780]. Proposed by H. Demir, Middle East Technical University,
Ankara, Turkey

Let ABC be a triangle and A4’ be any fixed point on the side BC. Construct
the inscribed triangle 4’B’C” which is directly similar to a given triangle X YZ.

Note by A. W. Walker, Toronto, Canada. The required construction will be
found in N. A. Court, College Geometry, ed. 1, 1925, p. 47. It is a simple applica-
tion of the following theorem, established on p. 46: If one vertex of a triangle of
variable size and given shape remains fixed and a second vertex moves on a given
straight line, then the locus of the third vertex is also a straight line.

Also solved by Anders Bager (Denmark), Walter Bluger, C. W. Eliason, Jr., Michael Goldberg,
M. G. Greening (Australia), Beckham Martin, D. N, Page, and the proposer.

37



38 4. SOLUTIONS OF ELEMENTARY PROBLEM FOR MONTHLY

Solution to Problem 2110:
American Mathematical Monthly, 76, (1969), 698.

Similar Triangles

E 2110 [1968, 780]. Proposed by H. Demir, Middle East Technical University,
Ankara, Turkey

If, in a plane, the triangles AUV, VBU, UVC are directly similar to a given
triangle, then so is ABC.

Solution by M. G. Greening, University of New South Wales, Austraha. Repre-
sent the points by complex numbers using the appropriate lower case letters and
take the given triangle as Z,Z,Z;. Let the direct similarities be z—a;z+08;
(t=1, 2, 3). Then #=az:1+B: v=azie+B8: (¢=1, 2, 3), taking subscripts
modulo 3. Then az:(gi11—2iy2) =2:(u —v) and

Bi(Zip1 — Zip2) = Zipa¥ — Zipolt

so that
3
2 (@izi + B (241 — Zige) = 0.
=1
As D% | (i31—2i2) =0 and Y o_; 2:(8:11—2irs) =0 we get
iz + 81 z 1 e 7 1
O=| aze+PB2 20 1]=]0b 20 1
o333 + 63 23 1 ¢ 23 1

which is a sufficient condition for a direct similarity: z;—a, 22—b, 2;—¢ to exist.

Also solved by Leon Bankoff, Jordi Dou (Spain), C. W. Eliason, Jr., Michael Goldberg, Nor-
man Miller, Simeon Reich (Israel), A. W. Walker, and the proposer.

Walker points out that the result may be found on p. 289 of R. A. Johnson, Modern Geometry
(1929).
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Solution to Problem 2124:
American Mathematical Monthly, 76, (1969), 938.

All Triangles Generate Right Triangles

E 2124 [1968, 899]. Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey

Construct on the sides BC, CA, A B of a triangle A BC, exteriorly, the squares
BCDE, ACFG, BAHK and build parallelograms FCDQ, EBKP. Show that APQ

is an isosceles right triangle.

Solution by W. E. Buker, Pittsburgh Public Schools. Assign coordinates
A(0, 0); B(a, 0); C(b, ¢). Then find by inspection the coordinates F(b—c¢, b+c),
D(b+c¢, ct+a—Db), Q(b, a+¢), K(a, —a), E(a+¢, a—b), P(a+c¢, —b). Since AQ
and AP have equal lengths and are perpendicular, the theorem follows.

Also solved by forty other readers.
Note. It follows at once that if parallelogram HAGR is constructed, then BQR and CRP are

also isosceles right triangles.
A. W. Walker points out that an extensive investigation of triangles bordered by squares is
found in a paper by Musselman, this MoNTHLY, 43 (1936), 539-548.
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Solution to Problem 2160:
American Mathematical Monthly, 76, (1969), 1146.

Some New Triangle Inequalities
E 2160 [1969, 300]. Proposed by Hiiseyin Demir, Middle East Technicai
University, Ankara, Turkey

Let p, x; be the distances of an interior or a boundary point P of a triangle
A1A24; from the vertex 4; and from the side opposite to 45, 1=1, 2, 3, with r
the inradius. Prove the inequalities

3 3 3
(a) 2. pi(dsin 4) = 2 xS 3 pisin(d 4).
fasl fal =1
(b) Pops + psp1 + Prpe = 8xixaxs/r.

Solution by M. G. Greening, University of New South Wales, Australia. Let a;
be the side opposite 4;, let P; be the angle 4;_1PA4 44, B; ; be the angle between
pi¢ and a; at A, so that B; i+ Biia=4: (All additions of subscripts are

modulo 3) Then .’X,‘;'=P.i+1 sin .B,'+1,,'=P.g__1 sin Bi—l.s’ and

> %=1 pi(sin Bj i1 + sin Bj ;)
$ 2
=12 p;-2 sin(34;) cos 3(Bjjr1 — Bji-1).-
i

The inequality 0= |B,~,J—+1—B,-,,-_1| <A, then yields (a).
As pip» sin P3;=x3a3, we obtain

(el

Xilg

2 b= 2, — 2
i s SIn .P,' 5 1/3
( I1 sin P;)
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—1/3

= 3( H a; I‘I x.-)us( I‘I sin P.-) = 24/3 ( I‘I a; I‘I ;\c.-)”.8

The last statement follows from the fact that J]; sin P; with D> ;P;=27 has a
maximum when Pj=Ps;=P;.
For (b) we now show

@) zv&(@ﬁ&mgs(gyam.

As Z,- x:=2A, H,- x; has a maximum when a;x; =asx:=azx;=2A/3, so that
max 8(]]: «f)V2=25A23-2(]]; as)-%%. (i) will follow if 3%2r. []: ai=24A2, or

(if) 3512R > 4,

as [[: a;=4RA, where R is the circumradius. But the triangle of largest perim-
eter which can be inscribed in a given circle is equilateral and the inequality (ii)
is certainly true then, so that (b) is established. In fact, 8 could be replaced by
12 in (b).

Also solved by Simeon Reich (Israel), T. Tamura (Japan), C. S. Venkataraman (India), A. W.
Walker and the proposer.

The improved inequality for part (b) was conjectured by Walker and proved by Reich. It is
interesting to note that aside from a solution to part (a) by L. Carlitz, all solvers and the proposer
reside outside the United States of America.
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Solution to Problem 2213:
American Mathematical Monthly, 77, (1970), 1109.

Quadrilaterals with the Nagel Property

E 2213 [1970, 79). Proposed by H. Demir, Middle East Technical University,
Turkey

Let us say that a (planar) polygon has the Nagel property if the lines through
the vertices of the polygon and bisecting the perimeter of the polygon are con-
current. It is known that all triangles have the Nagel property and that not all
quadrilaterals have the property. Determine the simple nondegenerate quadri-
laterals that have the Nagel property.

Solution by the editor based on the proposer’s solution. Let ABCD be a quadri-
lateral having the Nagel property. Let each of the lines 4A4’, BB’, CC’, DD’
bisect the perimeter and pass through the Nagel point N. Let AB=a, BC=b,
CD=¢, DA=d. We may suppose a+b=c—+d and b+c=a-+d. It then follows
that C’ lies on segment A B, B’ on CD, and 4’ and D’ on BC (Fig. 1). Set BD’' =u,

4 d D
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A'C=v, CB'=w, and a+b+c+d=2s. Since BC+CB'=s=D'C+CD, then
DB'=u. Similarly AC'=v, BC'"=w and D’A’=d. We distinguish three cases.

Cask 1. 50 and v5#0. Thinking of A4’ and DD’ meeting at IV, we see that
a necessary and sufficient condition for CC’ to pass through NV is

by Menelaus’ theorem applied to triangle ABA’ cut by line CNC’. Similarly,
BB’ passes through NV if and only if

—u w DN

b u ND

using triangle DD’C cut by BNB’. Then

DN
ND'

AN
N4’

_b_
-— -

Hence A D is parallel to D’A’, and since these segments are also equal, it follows
that ADA'D’ is a parallelogram. The diagonals 44’ and DD’ then bisect each
other,so AN=NA'and b=w. But b+w=s, so 2w=a —b+c+d=2b, from which
we obtain

b_a+c+d
3

Hence ABCD is a trapezoid such that the longer of its two parallel bases is the
arithmetic mean of its other three sides. Reversing the argument of this para-
graph shows that every such trapezoid has the Nagel property. For example,
the trapezoid with vertices (0, 0), (19, 0), (6, 24), (0, 24) has N=(7, 12).

CasE 2. u=v=0. Then a+b=c¢c+d=s and a+d=b+c=s, so 2a+b+d=2c
+b+d. Hencea=cand b=d,so ABCD is a parallelogram. Clearly every parallel-
ogram has the Nagel property.

Cask 3. =0 and 270 (or vice versa). Let AC and BD meet at M (Fig. 2).
Now a+d=b-+c=s,s0d+v+w=C'B+BC=CD+DA+AC"=c+d+v, whence
c=w. Applying Menelaus’ theorem to triangle ABA’ cut by CNC’ and to tri-
angle AA’C cut by BNM, we obtain

b A'N v A'N ¢
—s Nd ¢ " L B
AN —d CM CM b A'N b ¢ c
NA b mMa 0 Cuma ad N4 4 a4

Since M divides side CA4 of triangle DA C in the ratio ¢/d of the adjacent sides,
then DM bisects angle D. Hence XADM = MDC=qa. Applying the law of
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FiG. 2

cosines to triangles A BD and CBD and letting BD=f, we have
e’ = d* + f* — 2df cos «,
b = ¢* + f* — 2¢f cos a,

a® — b =d%*— ¢? — 2f(d — ¢) cos a.

Assumingd =c¢,letd=c+e,sob=c+v+eand a =c+v. Nowa?—(a+e)?=(c+e)?
—c?—2ef cos a, which simplifies to

ef cos a = ce + ae + €.
If 540, then cos a= (¢c+a+e) /f=(c+b) /f, an impossibility since ¢+b>f. Hence
e=0, so c=d and a=»b. The figure is therefore a kite. By symmetry, every kite

has the Nagel property.
Three other correspondents mentioned the kite and the parallelogram.
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Solution to Problem 2311:
American Mathematical Monthly, 79, (1972), 777.

The Compleat Cyclic Quadrilateral

E 2311 [1971, 793]. Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey

Prove that, if a quadrilateral 4,4,4;4, can be inscribed in a circle, then the
(six) lines drawn from the midpoints of 4,4, perpendicular to 4,4, (p, g, r, s distinct)
are concurrent.

Solution by Sister Stephanie Sloyan, Georgian Court College, Lakewood, N.J.
Assume that the circle is the unit circle and identify the point A; with the complex
number a; in the usual manner. Then the line from the midpoint of the segment
A,A, perpendicular to 4,4, is given by

~ - apdy — 4,4,

zZ—4aa,z = %(a_,, + aq) *—'ﬁ?;‘;a:—,
and it is easily calculated that all six lines pass through the point ¥(a, + a, + a5 + ay).
J. W. Clawson, The complete quadrilateral, Annals of Math. 20 (1918-1919),
232-261, calls this point the orthic center of the quadrilateral.

In a similar fashion one can show that the three lines joining the midpoint of
A,A, to that of 4,4, (p, q, r, s distinct) are each bisected by a point identified by
Clawson as the mean center of the quadrilateral. Since the mean center is given by
Y a, + a, + a; + a,), it follows that it lies halfway between the orthic center and
the circumcenter.
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Also solved by Michael Goldberg, Leonard Goldstone, M. G. Greening (Australia), N. G,
Gunderson, V. F. Ivanoff, Lew Kowarski, Harry Lass, O. P. Lossers (Netherlands), Rick Troxel,
and the proposer.

Editorial Note. This theorem and its solution appear on page 59 of Yaglom, Complex Numbers
in Geometry, Academic Press, 1968, along with many other interesting properties of cyclic quadrilat-
erals, cyclic pentagons, etc. (see pages 54-68). The point of concurrence of this problem is called the
anticenter by Lucien Droussent (On a theorem of J. Griffiths, this MONTHLY, 54 (1947), 538-540).
The anticenter N is the midpoint of the quadrilateral’s Euler segment which joins its circumcenter O
to the center H of the circle through the four orthocenters H,, of the triangles 4;4;4; ({z‘, Ik ,m} =
{1, 2,3, 4}); these orthocenters form a quadrilateral congruent to the given one and symmetric to it
in point N. Furthermore, the eight points 4; and H; lie by fours on four distinct pairs of circles, each
pair having N as center of symmetry.

The eight congruent nine-point circles for the four triangles 4;4;4; and four triangles H;H;H}
all pass through N, and their centers lie on another congruent circle centered at N. Thus N can be
called the eight circle point and this last circle the eight point circle for the quadrilateral.

There are four distinct Simson lines for the eight points 4,, with triangles 4;4;4; and H,, with
triangles H; H; Hy, and these Simson lines all pass through N. In fact, one can form 280 (180 of
which are distinct) pedal circles (and lines) by taking any one of these eight points with the triangle
formed by any three others, and all of them pass through N.

The nine point centers Ny, for the four triangles 4;4;4;, form a quadrilateral homothetic to
HH,H3Hy in center O with ratio 4, hence homothetic to 41424344 incenter G, 1/3 of the way from
O to H, with ratio —2. Similarly, the nine-point centers N,;, for the triangles H;H;H} are homo-
thetic to HyH,H3H, in center G', 2/3 of the way from O to H, with ratio —3. Their common cir-
cumecircle has center N and radius half the given quadrilateral’s circumradius. In a similar manner
(see E 1740 [1965, 1026]) the centroids G,, for the triangles 4;4;4; form a quadrilateral ho-
mothetic to HyH,H3H4 in center O with ratio 1/3, hence homothetic to 41424344 in center §
(the mean center) 1/4 of the way from O to H, with ratio —%. Its circumcenter is G. Similarly,
the centroids G,, (whose circumcenter is G') for the triangles H;H;H) determine the other quadri-
section point §' of OH. Furthermore, N is the center of symmetry for the two quadrilaterals
NiN>N3Ny and NjN,N3N, and also for G1G2G3Gs and G{G,G3G,.

There are eight orthocentroidal circles (see Droussent) on the segments G;H; and on G; H; as
diameters, pairs of which determine 16 distinct radical axes all passing through &, so N is the center
of a circle orthogonal to all these eight circles.

We see that the Fuler segment could well be renamed the seven point line (points O, S, G, N, G,
S’, H). With this notation, since points G and N trisect and bisect OH, the resemblance to the Euler
line of a triangle is striking.

See also H. G. Forder, Higher Course Geometry, Cambridge University Press, 1949, 232-235,
and R. A. Johnson, Medern Geometry, Houghton-Mifflin, 1929, pp. 169, 207, 243, and 251-253.

Solution to Problem 2312:
American Mathematical Monthly, 79, (1972), 778.

An Application of Ceva’s Theorem

E 2312 [1971, 793]. Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey

Let D be a point in the plane of a positively oriented triangle ABC and let AD,
BD, CD intersect the respective opposite sides in 4,, By, C; . If the oriented segments
BA,, CB,, AC, are equal (= 0), then D is uniquely determined and lies in the in-
terior of ABC. (Notice the analogy between D and the Brocard point Q.)
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Solution by Michael Goldberg, Washington, D.C. Let the lengths of the sides
of the triangle be a, b, ¢, where a < b =< ¢. Then by Ceva’s Theorem, we have the
equation

L5 (a=38)(b—08)(c—96) =46

The left member of (*) is a function which decreases monotonically from abc at
0 = 0 to zero at § = a, and the right member is a function which increases mono-
tonically from zero at § = 0. Hence the two functions are equal for exactly one
real value of & which lies in the interval (0, a); it is easy to see also that there are
no other real solutions to (*).

Note that if, instead, the segments CA,, BC,, and AB, are equal, then the value
of § is the same, but the transversals cross at another point E. The points D and E
coincide only for the equilateral triangle.

Also solved by Bernhard Andersen (Denmark), Harold Donnelly, Jordi Dou (Spain), M.G.
Greening (Australia), V. F. Ivanoff, and the proposer.

Editor’s Comment. L. Goldstone located a complete discussion of this point, its isotomic
conjugate, and their properties in Peter Yff, An analogue of the Brocard Points, this MonTHLY 70
(1963), 495-501.
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Solution to Problem 2363:
American Mathematical Monthly, 80, (1973), 694.

On Spherical Triangles

E 2363 [1972, 663]. Proposed by Hiiseyin Demir, Middle East Technical
University, Ankara, Turkey

Characterize pairs of spherical triangles ABC and A’B’C’ for which A’ = a,
B'=b,C'=¢,A=a’,B=0b', C=¢",

Solution by M. G. Greening, University of New South Wales, Australia. For
any spherical triangle 4A'B'C’ we have:

(1) cos a’ =cos b’ cos ¢’ + sin b’ sin ¢’ cos A

and the two others following from the permutations (a, b, ¢), (a,c, b). So
(2) cos A =cos B cos C + sin B sin C cos a,

and so on. But from consideration of the polar triangle of ABC,

3) cos A = — cos B cos C + sin B sin C cos a.

Then cos B cos C = cos Ccos A = cos Acos B =0 and we have, say, A = B = n/2,
yielding @ = b = = /2 from (2). Also cos C = cosc, which must give C =¢ as ¢ > 0,
C < n. Consequently

A’:B’:a’:b'=n/23ndc’=c’=c=c,
so that the two triangles are necessarily.congruent.

Also solved by Michael Goldberg, Lew Kowarski, Clellie Oursler & Eric Sturley, and the pro-
poser.

Solution to Problem 2462:
American Mathematical Monthly, 92, (1985), 360.

The Extended Erdés-Mordell Inequality

E 2462 [1974, 281). Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let P be a point interior to the triangle 4,4, A4,. Denote by R, the distance from P to the
vertex A,, and denote by r; the distance from P to the side a, opposite to A,. The Erdés-Mordell
inequality asserts that

Ri+R,+R;22r+nr+n).

Prove that the above inequality holds for every point P in the plane of 4,4, 4, when we make
the interpretation R, > 0 always and 7, is positive or negative depending on whether P and A4,
are on the same side of a, or on opposite sides.

Editorial note: Professor Clayton W. Dodge, Department of Mathematics, University of Maine
refereed the “solutions” submitted to this problem in 1974 and found that there were no solutions.
Since that time Professor Dodge himself has solved the problem. His solution appears in Crux
Mathematicorum, vol. 10, no. 9, November 1984, pages 274-281.
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THE EXTENDED ERDOS-MORDELL INEQUALITY

CLAYTON W. DODGE

Ten years ago The American Mathematical Monthly published the following Prob-
lem E 2u62 781 (197u) 281], which is an extension of the earlier Problem 3740
proposed by Paul Erdds [u2 (1935) 3961 and first solved by L.J. Mordell [us (1937)
252-254]:

"E 2u62, Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let P be a point interior to the triangle AjAsA;. Denote by Ri the distance
from P to the vertex Ai’ and denote by r, the distance from P to the side a, oppo-
site to Ai’ The ErdOs-Mordell inequality asserts that

Ry + By + R3 22(2"1 +r2+r'3).

Prove that the above inequality holds for every point P in the plane of A;A,A; when
we make the interpretation Fi > 0 always and r, is positive or negative depending
on whether P and Ai are on the same side of a, or on opposite sides."

It was my pleasure in 1974 to referee the solutions to this problem. Curiously,
each of the solvers started with the solution to the original Erdds inequality given
by Kazarinoff 1] and modified it for the case where ry, rp, or r3 is negative.

Each made the same error, invalidating the proof. Curiously, Kazarinoff stated that
his proof "holds even if P 1ies outside the triangle, provided it remains inside the
circumcircle”, but the Elementary Problem Department editors could not see that such
an extension of the proof was possible without committing the same error the other
solvers had made. We outline Kazarinoff's proof and describe the error. Since we
shall rely heavily on this proof, our outline is quite complete. It is interesting
to note that, if Kazarinoff's statement could have been verified then, a proof would
have been published in 1g75.

In Demir's notation, Kazarinoff let P 1ie within angle A; and then he reflected
triangle A;A,A; in the bisector A;T of angle A; into triangle AjAJA4, as shown in
Figure 1. Noting that the bisector of angle A; also bisects the angle between the
altitude A;D and the circumradius OA;, he used a theorem of Pappus which states that
the area of the parallelogram whose adjacent sides are A;A; and A{P plus the area of
the parallelogram whose adjacent sides are AP and A;A3 is equal to the area of the
parallelogram erected on AJA{ whose sides emanating from A} and A{ are equal, as
vectors, to ATP. Since AP = Ry, Kazarinoff obtained the first of equalities (1),
and the other two are obtained in the same way when P lies within angles A, and As:

49
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Az
A
AI
3
Ay g 2
r3
r2
P
Figure 2
Figure 1 o
ay Ry COS (OAlp) = azrs + asrsp
asRy €0s (0A,P) = asry + airs (1)

asP3 cos (OA3P) = aijry + agry.

From this follows, when P is an interior point of the triangle,

v

Rl + Fz + Rs Rl cos (OAIP) + RZ cgs (OA2P) + R3 CcoS (OA3P)

(2% a3 21 42,
= (a3+a2)r1 + (a1+a3 Jr, + (a2+a1 )r, (2)

%

2(ry + ro + Pr3)

because x + 1/x = 2 when = > 0.

Equations (1) hold for all locations of P, provided Demir's sign convention is
observed. Then also the first two Tines of (2) hold. We shall make use of this in
our proofs later in this paper, so a proof is presented.

Let P 1ie outside angle A; and outside angle A, but inside angle As and inside
the circumcircle of triangle AjAzA3, as shown in Figure 2. Using the notation of
Figure 1, we see that the parallelogram on side AJA{ now is the difference between
those on sides A1A} and AjAd. Accordingly,
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ayRy cos (0AyP) = -aory + azrs,
where we take the r. all nonnegative; similarly,
asRo cos (0ALP) = asry - airs,

and we have as before
a3zR3 COS (OA3P) = ayrp; t+ asri,

since P Ties within angle As. Thus equations (1) are true for this case if we
observe Demir's sign convention. That they also hold in other cases is not needed
here. Since the cosines of the angles OAiP are all still positive because P lies
inside the circumcircie, the first two Tines of (2) both still hold. Only the third
line of (2) is in doubt. In fact, Kazarinoff's argument fails at this point, as
explained in the next paragraph.

The error in the submitted solutions to Problem E 2462 occurred when one of the
r.s S2Y r3, is negative. Then we still have

ai as

> 2,
az ai

but, since r5 < 0, the inequality reverses to give
G a
rendering the argument inconclusive. The editors could find no simple remedy for
this flaw since the extended theorem requires that either one or two of the distances
r, be negative., We wrote to those who had submitted solutions, and Leon Bankoff
and I corresponded for perhaps a year in attempting to put together a satisfactory
proof. Over the next nine years I returned to the problem from time to time, fas-
cinated by its challenge. )
Two cases were disposed of almost immediately.
Case 1. Point P lies inside the angle vertical to a vertex angle.
For example, let P 1ie inside the angle vertical to Ay, as shown in Figure 3.
Then r, and r3; are to be taken negative and we must prove that
R + Ry + Ry 2 2(ry; - rp - r3),
where the r. have all been taken nonnegative and we have inserted the appropriate
negative signs. Because R, and r; are hypotenuse and leg of a richt triangle, we
have
Ry 271, and similarly Ry 2 r,
Thus
Ry + Ry + Ry 2Ry + Ry 2pr1 +r1 22(r1 -~rs -r3). [
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20 Figure 3 Figure 4
Case 2. Point P is interior to an angle of the trianale, but far enough out-
side the triangle so that a foot Fi of a distance r, lies outside the triangle.
As shown in Figure 4, we take P lying within angle Ay and far enough outside
the triangle so that, say, the foot F; of distance ry Ties outside the triangle.
Then ry is taken negative. Choose point Aj so that F; is the midpoint of segment
A,A5. Then PA, = PA; and the three distances R, for triangle A;A,A; are the same
as those for trianale AjAJA;. Also r, and r3 remain unchanged, and only r; changes
to »{ . If, as pictured, P 1ies outside triangle AjAJA;, then |ry! > Ir{| and
-ry < -py since they both must be taken necative. If P lies inside triangle AjA4As,
we get -r; < 0 < r{. So in either case, using the appropriate sign, we have

II’1’+Z’2 + r3y 2 -r1 + ro + ri.

It therefore suffices to prove the extended theorem in the case where all three feet
Fi of the distances r, 1ie inside the triangle's sides or at its vertices, and when
this occurs P lies inside the circumcircle. 0O

A comprehensive computer run showed the theorem
apparently true for all points inside the circumcircle,
so all that remained was to prove the theorem when the
point P 1ies outside the triangle and inside the cir-
cumcirclie. Moreover, Case 2 eliminates a portion of
even that region (when, say, P lies inside triangle
A,AsAs, for the original Erdds inequality applies to
that triangle). Let 0 be diametrically opposite ver-
tex A; on the circumcircie of triangle A;AsA;, as
shown in Figure 5. Without loss of generality, we Figuré 5
must prove the theorem whenever P 1ies within or on
triangle A,A,D. We may assume that A, < 30° and Ay < 90° since otherwise the indi-
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cated region is empty. In this region, since ry is to be given a negative sign,
we must prove

Ry + By + A3 + 2r7 2 2ry + r3,

If Kazarinoff's statement that his proof holds
whenever P 1ies inside the circumcircle had been
substantiated, then the proof of Problem E 2u62
would have been complete at this point. The
following cases, all developed in the past year,
do complete the desired proof.

Case 3., Point P lies in triangle A,A3D
and at Teast one of angles A, and A; does not
exceed 30,

Referring to Figure 6, let Ay < 30°, so
that sinA, < 1/2. If /A3A;P = e, then

rq = Ry sin (Ay+€), r1 = By sine,

]

Figure 6
and
sin (A,+e) - sine = sinAjycose + cosApsine - sine
= sinAy,cose + sine(cos Ay -~ 1)
. 1
< sinhA, < 5
Now
Ry = PAy > PA,2sin (As+e) - 2sine} = 2ry - 2n7.
Hence

By + Pp + Ry + 2ry 27y + (2r3-2r1) + ¥y + 291 = 2ro + 2r3., 0O

Case 4. Point P lies inside the largest angie of the triangle.
Let P T1ie in triangle A;A3D and suppose A; 2 A, =2 A;. Then we have a; 2 a» 2 aj
and ry < r,, and also

a a
a a1

as as ai as’

(S
A
<
]
|
+
I
IA
<
m

Hence, if for some number ¥ we have Ury = Vrp, + N, then
Ury 2 Upy + 1
and, since also
(U-2)ry £ (U-2)ry,
we may subtract to get

2ry 2 2rp + N,
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Therefore, since we have, by the first two Tines of (2),
az as S (43,41 ay %2
Ry + Ry + R3 + (a3+a2)r z (a T )r, (a2+a1) 3s

it follows that

ay a
Ry + Ao + Ry + 2ry > 2rp + (&‘;‘f’a‘lz")l'*a 2 2ry + 2rz. [

Now only one case remains to be settled, but first we prove a pair of Temmas.

LEMM4 1. The function
1 B o - 4 _
fl@) =1 - cosg - 2sin (z-15") T ieosx //

[+]

Ay = 2sin {x-15 )

/, / 17 2 ix /
/

- ° o ’ . -

ris, 90 J. (See Figure 7.) /

We have ///

S'{z) = sinz - 1-cos(x«15°),

has a minimum at approximately (29, 0.0ub),
s¢ flx) > 0 for all = in the interval

[o3)
(@]

(%]
(&3]
e

(3]
(4]

[\
P

2
. . 1
which vanishes when T
N cos 15° .1 )
tanx = ————, y = flx)
2 - sini1s
. o . R 0k
that s, when x ~ 29.019466 , at which point
Flax) = 0.0014419 > 0. Since . = . .
s 2C 50 70 e
1_. °
i - + = -1 >
iz cos x 2sm( 15 ) 0, Figure 7

the critical point is a minimum. O
LEMmA 2. 1f 1 <2 < 2, then g(x) = o + 1/x £ 2.5.
Clearly g'(x) = 0 in the given interval, so g(z) < g(2) = 2.5, O
Qur last case takes P inside the triangle A,A;D of Figure 5, where A; > 30°

and A; > 30° (by Case 3), and A; is not the largest angle of the triangle (by case u4).

We may without loss of generality assume that A, is the largest angle. Since we

need not consider A, = 30° (by Figure 5), we have the following case:

Case 5.
(See Figure 8.)

Let § = /OAsP. Since A; > 30°, we have A; + Ay < 150" and A < 75°. So
JAs0A, < 150° and JOAsA, > 15 . From

a, _sinA

- ! o < o
s s1nA3 and 30 < A3 Az < 90 ,

we get

(]

Point P 1ies inside triangle A,A;D, and 307 < Ay < Ay and Ay < Ay < 30°.
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and so, by Lemma Z,

Now ry < B3 Sin (8-15"), so, by Lemma 1,

R3(1 - cosd§) 2 %R3sin(6—15°) > %Tl-

Then

Ry + Ep + Ry + 2ry Ry + Ry + R3c0S 8 + A3 (1-cosd) + 2r;

v

R1 + By + B3 €056 + 2.5r

> Ry cos (OAyP) + R, cos (OAoP) + R3coséd + (§§+Z%)r1
- (%34 41,92
= (al‘a3)r2 + (a2~a1)P3 by (2)

[\

2(ry + r3),

and we are at last finished. The proof of Problem E 2462 is complete.

Finally, we use the extended Erdds-Mordell inequality for triangles to aget, as
a corollary, a corresponding result for convex quadrilaterals.

Let AjA,A3A, De a convex quadrilateral, and let P be any point in its plane.
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We set PAi = Ri > 0 and denote
the signed distance between P
and 1ine A.A. by r _, the sign
) %

being determined by Demir's
convention for any triangle of
which AiA' is a side. Thus
(see Figure 9), ry, is asso-
ciated with triangles Aj;AsA;3
and A1AoA, and has the same
sign for both triangles re-
aardiess of the location of
point P; and similar state-

ments can be made about rjys3, Figure 9
r3u, and ryy. The distance
r3] » on the other hand, is associated with triangles AjAzA; and AjAsAy; and if
r15 is the signed distance associated with triangle AjAzAs, then -ry3 is the signed
distance associated with triangle AjAsA,. Similarly, if rpy corresponds to triangle
A1AsA,, then -rp, corresponds to triangle AAsA,. Our inequality extended to quad-
rilaterals reads as follows:

COROLLARY. If AjA,A3A, is a convex quadrilateral, P is any point in its plane,
and the distances Ri and Pij are as defined above, then

3(Ry + Ry + Ry + By) = U(r1z + ros + r3y + rul). (3)

Proof. We apply the extended Erdds-Mcrdell inequality successively to triangles
AlAzAg s AlAqu » A1A3AL(. , and A2A3Ag5

v

Ry + Ry + B3 2{r12 + ra2s + ri13)l.

[\

Ry + Ry + Ry 2(r1o + Pou + ru1),

Ry + Ry + Ry 2z 2(rgy + ryy1 - r13)s

v

Ry + Ry + Ry 2(ro3 + ray - rou).
and adding these four inequalities yields (3).
REFERENCE

1. D.K, Kazarinoff, "A Simple Proof of the Erdds-Mordell Inequality for Tri-
angles", Michigan Math, J,, 4 (1957) 97-98,

Mathematics Department, University of Maine, Orono, Maine 04469,
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Solution to Problem 2625:
American Mathematical Monthly, 85, (1978), 121.

A Property of Conics

E 2625[1976, 812]. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey

Let A, (i=0,1,2,3 mod4) be four points on a circle I'. Let ¢, be the tangent of I' at A, and let p,
and g, be the lines parallel to ¢, passing through the points A;_; and A, ., respectively. If B, =1, N 1,4,
C. = p, N q,., show that the four lines B,C, have a point in common.

Solution by Jordi Dou, Barcelona, Spain. We shall prove a more general result.

THeOREM. Let K be a non-degenerate conic in a real projective plane, A, (0 =i = 3) be four distinct
points on K and r be a line such that A, & r. Let t, be the tangent of K at A, B, =t Nt..,, T, =407,
p.=TA.., q=TA.. and C, = p; N q,... Then the four lines B.C, are concurrent.

Proof. Let 7 be the polarity with respect to K and § = AjA,N A;As. Put s=7(S) and
R = m(r). Let & be the harmonic homology with center S and axis 5. Thus we have o”=1 and
o(A,)=A,... We claim that the point Q = o(R) lies on each of the lines B.C.

Note that 7 interchanges S and s and consequently o and 7 commute. Therefore, r = om = 7o is
also a polarity. We have

r(t)=on(t)=0(A)= A2
T(t.,.l)=An-3= Al—l:
7(r)=om(r)=c(R)=Q

and consequently the two triangles T,., T.B, and A, ..A,_,Q are polar to each other with respect to K.
By Chasles’ theorem (see H. S. M. Coxeter, The Real Projective Plane, Cambridge University Press,
1961, p. 71) this is a pair of Desargues’ triangles. Hence the lines T..,A,.>= q.+1, TA,-, = p, and B,Q
are concurrent at C, = p; N q,.,. Therefore we see that Q lies on the lines B,C, as claimed.

The statement of the problem is obtained by choosing K =T and r = line at infinity.

Also solved by L. Kuipers (Switzerland), and the proposer.
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Solution to Problem 3135:
American Mathematical Monthly, 95, (1988), 764.

Matching Distances to Vertices

E 3135 [1986, 215). Proposed by Hiiseyin Demir, Middle East Technical Univer-
sity, Ankara, Turkey.

For a scalene triangle ABC inscribed in a circle, prove that there is a point D on
the circle whose distance from the opposite vertex is the sum of its distances from
the other two vertices, and construct D with ruler and compass.

Solution I by J. Leech, University of Stirling, Scotland. Suppose BC > AC > AB.
Perturb BAC into an isosceles triangle BXY by determining X on the ray B4 and Y
on BC such that BX = BY = AC. The circumcircle of BXY meets the circumcircle
of BAC at the required point D. To prove D has the required property, extend AD
to a point Z such that DZ = DC. Then triangle DZC is similar to triangle BXY,
because the angles at D and B are both supplementary to angle ADC. Conse-
quently, triangle DBY is congruent to triangle ZAC, since AC = BY by construc-
tion, the angles at A and B are equal and angle BDY = angle BXY = angle DZC.
Hence DB = ZA = DA + DC.

Solution II by P. Tzermias (student), University of Patras, Greece. Let a, b, c be
the lengths of the sides opposite 4, B,C, and let x, y,z be the lengths of
DA, DB, DC. We seek point D such that y = x + z. By Ptolemy’s Theorem,
ax + cz = by. Substituting for y yields x/z = (¢ — b)/(b — a). Thus, D lies on
the “Circle of Apollonius” determined by 4 and C using the ratio (¢ — b)/(b — a).
This circle has a standard construction (see N. Altshiller-Court, College Geometry,
1952. 0. 15

Editorial comments. Since ¢ — b and b — a must have the same sign, D must lie
on the arc cut by the side of intermediate length. Consequently, if ABC is isosceles,
then D can only be the vertex common to the two equal sides. On the other hand, if
ABC is equilateral, then D can be any point on the circumference; Leech’s two
circles then coincide.

Several solvers noted that the existence of D follows from the Intermediate Value

Theorem. If D on the arc opposite B is close to the shortest side of ABC, then its
distance to B is less than DA + DC, but if D is close to the longest side, then
DB > DA + DC.

Other solutions independent of Ptolemy’s Theorem were submitted by J. Dou
(Spain), L. Kuipers (Switzerland), and by P. L. Hon (Hong Kong).

E. Morgantini (Italy) submitted a paper entitled “Una Quartica Bicircolare Della
Geometria Del Triangolo” making reference to this problem.

In addition to the solvers mentioned above, correct solutions were received from S. Arslanagi¢
(Yugoslavia), A. Bager, H. Eves, J. Fukuta (Japan), H. Kappus (W. Germany), O. P. Lossers (Nether-
lands), J. P. Robertson, J. S. Robertson, V. Schindler (E. Germany), R. A. Simon (Chile), B. A. Troesch,
M. Vowe (Switzerland), and the proposer.
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Solution to Problem 3164:
American Mathematical Monthly, 95, (1988), 660.

Elliptical Tangents

E 3164 [1986, 566]. Proposed by Huseyn Demir, Middle East Technical University,
Ankara, Turkey.

Let s, ¢t be the lengths of the tangent line segments to an ellipse from an exterior
point. Find the extreme values of the ratio s/¢.

Solution by Gene Arnold and Vaclav Konecny, Ferris State College, Big Rapids,
MI. Consider an ellipse as the normal projection of a circle, from one plane to
another in R3. Clearly tangents project to tangents and the minor axis of the ellipse
is perpendicular to the intersection of the two planes. Since the ratio of any two
intersecting tangents to the circle is 1, the extreme ratios of two such tangents to the
ellipse will be attained when the ratio of one tangent to the circle to its projection is
minimum while the other ratio is maximum. This happens when the projected
tangents are respectively parallel to and perpendicular to the intersection of the
planes. Thus the extreme ratios are those of the major axis to the minor axis, and its
reciprocal.

Editorial comment. M. S. Klamkin suggested study of the more difficult problem
of the extreme values of |s — ¢|.

Also solved by M. Barr (Canada), J. C. Binz (Switzerland), J. M. Cohen, J. Dou (Spain), J. Fukuta
(Japan), P. L. Hon (Hong Kong), L. R. King, M. S. Klamkin (Canada), K.-W. Lau (Hong Kong), O. P.

Lossers (The Netherlands), M. Pachter (South Africa), K. Schilling, J. H. Steelman, P. Tracy, D. B. Tyler,
C. Vandermee (The Netherlands), and the proposer. One incorrect solution was received.

Solution to Problem 3422:
American Mathematical Monthly, 99, (1992), 679.

Tangents Intersect on the Axis of Involution

E 3422 [1991, 158). Proposed by H. Demir and C. Tezer, Middle East Technical
University, Ankara, Turkey.

Suppose F and F’ are points situated symmetrically with respect to the center
of a given circle, and suppose § is a point on the circle not on the line FF'. Let P
and P’ be the second points of intersection of SF and SF’ respectively with the
circle. If the tangents to the circle at P and P’ intersect at T, prove that the
perpendicular bisector of FF’ passes through the midpoint of the line segment ST.

Solution I by Jean-Pierre Grivaux, Paris, France. We work in the complex plane,
with lower-case letters denoting the complex representations of points designated
by the corresponding upper-case letters. We may assume that the circle is U =
{Z: |z| = 1} and that the points F and F’ are on the real axis.

If A, B € U, then Z is on the line through 4 and B if and only if z + abZ =
a + b, which we shall refer to as equation &,,. To derive this equation, note that



60

4. SOLUTIONS OF ELEMENTARY PROBLEM FOR MONTHLY

the line is the set of Z whose numerical representation satisfies z = a + r(b — a),
where r is real. Conjugating this and using @ = 1/a and b=1 /b yields z = a +
r(b — @), which when multiplied by @b and added to the first equation yields &,,.
This form of &, remains valid when a = b.

Smce &,, and &, , are the equations of the tangents to U at P and P’, we have
t +p%=2p and t + (p)t=2p'. Solvmg for ¢ by eliminating t (when p # p’)
yields t = 2/(p + p'). Note that p + p’ # 0 because s is not real. The midpoint of
ST is Z, where

1 1
z=—2-(s+£)=5

2
s+ ——|,
p+p

and the result we want to prove is z + z = 0, which by the above is

o= i 5" ol
s + -1+ | = + -| = 0.
1/p+1/p s p+tp

This is equivalent by algebraic manipulation to

2s
( T 2)(1 pp’) =p+p. (*)

Sine F and F’ belong to the lines PS and P’'S respectively, f and f'(= —f)
satisfy the equatlons ¢é,, and &, respectively, namely (fX1 + ps) =p + s and
(=fX1+p)=p +s, where we use the fact that f f. Elimination of f from
these two equations produces the desired equality (*)

Solution II by the proposers. We exclude the case in which F and F’ coincide.
Let K be the point diametrically opposite S. Let S” be the additional point where
the line through S parallel to FF' intersects the circle (S’ may coincide with §).
The lines SS’, SP, SK, SP' form a harmonic pencil, as the center of the circle
bisects FF'. Consequently, for any point X on the circle, the lines
XS', XP, XK, XP' form a harmonic pencil. Choosing X = P or X = P’ in particu-
lar, we find that the pencils PS’, PT, PK, PP’ and P'S’, P'P, P'K, P'T are har-
monic. Since the line PP’ is common to both pencils, the points S', K, T lie on a
line which is clearly perpendicular to FF'. Hence the perpendicular bisector of FF’
bisects ST.

Editorial comment. Most solvers used straightforward analytic geometry and
brute force calculation to prove the result. Several used synthetic Euclidean
geometry. H. Kappus gave another proof using complex numbers. O. P. Lossers
gave another proof using projective geometry. A nice approach by J. Dou uses a
classical property of projective involutions of a conic (involutions sending a conic
to itself and preserving cross ratios). We briefly describe this and its relationship to
Grivaux’s solution, using the notational conventions of that solution.

The mapping o: R — R given by o(x) = —x yields a projective involution of
the real line which extends to a projective involution of the real projective line P by
defining () = . With point S given on the unit circle U, we define m: P - U
by letting (X ) be the point where the line joining § to X € P again intersects U.
In particular, 7 applied to the point at infinity is the other point of intersection
with U of the line through § parallel to the real axis. It then follows that the
mapping g: U — U given by g = meo o7 ! is a projective involution of U.
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The numbers corresponding to the fixed points of g are —s and —35, since o
fixes 0 and «. Now a classical result of projective geometry implies that for each
P € U, the tangent lines of U at P and g(P) intersect on the line 1 through the
fixed points of g. Since T is the intersection of the tangent lines at P and
P’ = g(P), we see that T is on the line 1, and it is then obvious that the midpoint
of ST is on the pure-imaginary axis, as was to be proved.

It is easy to calculate that 7w(X) is represented by (x — s5)/(1 — xs) for x € R,
and g(P) is represented by (A — p)/(1 — Ap) for p € U, where A =
—2s/(1 + 52). In fact, A is real (or ) and it represents the intersection of the
tangent lines at the fixed points of g. Indeed, the relation () in Grivaux’s solution
expresses the fact that A satisfies the equation & ; thus the line through P and P’
always passes through A. This shows that the involution g is obtained by sending
each point P € U to the other point where U intersects the line through A and P.
The line 1 (the “axis” of the involution g) is the polar of A with respect to U.

For a detailed discussion of involutions of conics, see H. F. Baker, An Introduc-
tion to Plane Geometry (Cambridge University Press, 1943), Chapter 1X, or M.
Berger, Geometry II (Springer, 1987), Section 16.3. In Berger’s book the above
point A is called the “Frégier point” of the involution g.

Solved by 26 readers (including those cited) and the proposers.
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Solution to Problem 3469:
American Mathematical Monthly, 100, (1993), 875.

Six Barycenters in Search of a Conic

E3469 [1991, 955]. Proposed by Hiiseyin Demir, Middle East Technical University,
Ankara, Turkey.

Suppose P is a point in the interior of triangle ABC and suppose AP, BP,CP
meet the lines BC,CA, AB respectively at the points D, E, F. Prove that the
centroids of the six triangles PBD, PDC, PCE, PEA, PAF, PFB lie on a conic if
and only if P lies on at least one of the three medians of the triangle.

Restatement of problem and fixing of notation. Applying the homothety with
center P and ratio 3:2 we see that the centroids of triangles are on a conic if and
only if the midpoints of AF, FB, BD, DC, CE and EA are on one conic. Let
x,y,z,u,v,w denote half the lengths of AF, FB, BD, DC,CE, EA, respectively.
Let the midpoints of AF, FB, BD, DC,CE, EA be denoted by 1,2,4,5, 6 respec-
tively.

Solution I by Victor Prasolov, Independent University of Moscow, Moscow,
Russia.

By Carnot’s Theorem (see Howard W. Eves, A survey of geometry (Revised
Edition), Allyn and Bacon, 1972, pages 256 and 262) the six centroids lie on a conic
if and only if

x(2x +y)z(2z + w)v(2v + w) = w(2w + v)u2u + z)y(2y +x). (1)

By Ceva’s Theorem, xzv = wuy, so (1) simplifies to xzw + zvy + vxu — (wux +
uyv + ywz) =0, or (x — yXz — uXw — v) = 0. This condition corresponds to P
lying on a median.



4. SOLUTIONS OF ELEMENTARY PROBLEM FOR MONTHLY

Solution II by Albert Nijenhuis, Seattle, WA. By Pascal’s Theorem, the points 1,
2, 3, 4, 5, and 6 lie on a conic if and only if the three points Q = 4B N 45,
R =BC n 61 and S = CA N 23 are collinear. (There is no real difficulty if any of
these points are at infinity. The ratio AQ /0B, for example, is replaced by —1 if
AB||45.)

By Menelaus’ Theorem, we have

AQ 2z +u v BR 2v+w %X

OB u  2w+o ’ RC w2y +x
CS 2x+y z
SA y 2u +z

Multiplying these together and using Ceva’s theorem, as in Solution I, we see that
AQ/QB - BR/RC - CS/SA = —1 if and only if (x — yXz — u)(w — v) = 0. Thus
Q, R, § are collinear and hence the points 1, 2, 3,4, 5, 6 lie on a conic if and only if
P is on a median.

Comments by Neela Lakshmanan, University of Scranton, Scranton, PA. The
restriction that P is interior to the triangle may be relaxed: we need only that P
does not lie on any side of the triangle.

We can prove that the result is true not only for the midpoints but also for the
points that divide each of those six segments in a constant ratio: 1f 1,2, 3,4, 5, 6 are
points on the sides of the triangle defined by A1:1F = F2:2B =B3:3D =
D4:4C = C5:5E = E6:6A, then the six points lie on a conic if and only if P is
on a median. Also, if P is an interior point, the hexagon 1, 2, 3,4, 5, 6 is convex and
attains its maximum area when P is the centroid of AABC.

Editorial comment. Many of the solvers supplemented the use of Carnot’s
Theorem or Pascal’s Theorem with homogeneous coordinates and analytic meth-
ods. Some others worked directly with conditions on the six coefficients of a
general conic.

Solved also by F. Bellot and M. A. Lopéz (Spain), R. J. Chapman (U.K.), J. Fukuta (Japan), H.
Kappus (Switzerland), O. P. Lossers (The Netherlands), I. A. Sakmar (Turkey), Anchorage Math
Solutions Group, and the proposer. One incorrect solution was received.
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5 [Contributed Solutions to MONTHLY problems|

List of solutions contributed by Hiiseyin Demir to problems in
American Mathematical Monthly:

[1] Advanced Problem 4057, American Mathematical Monthly, 51, (1944), 168.
[2] Elementary Problem 1107, American Mathematical Monthly, 61, (1954), 643.
[3] Elementary Problem 1142, American Mathematical Monthly, 62, (1955), 444.
[4] Elementary Problem 1148, American Mathematical Monthly, 62, (1955), 495.
[5] Elementary Problem 1166, American Mathematical Monthly, 63, (1956), 42.
[6] Elementary Problem 1687, American Mathematical Monthly, 72, (1965), 425.
[7] Elementary Problem 2122, American Mathematical Monthly, 76, (1969), 833.
[8] Elementary Problem 2398, American Mathematical Monthly, 81, (1974), 89.

Solution to Problem 4057:
American Mathematical Monthly, 51, (1944), 168.

Euler Line
4057 [1942, 616]. Proposed by J. R. Musselman, Western. Reserve University

Let B, Bz, B;s be the points symmetric to the vertices of triangle 414243 in
its circumcenter O, and let Ci, Cs, Cs be the reflections of 4; in the perpendicular
bisector of the sides of 414343 It is known that the circles OB1Cy, OB:Cs,
OBs(C; meet at a point P. Show that P lies on the Euler line of 4,4:43 and that
O is the midpoint of PD, where D is the inverse in the circumcircle of the ortho-
center I of 4:4.45.

Solution by Hiiseyin Demsir, Columbia University. Let G1G2G; be the triangle
formed by the straight lines 4,C; so that 414,45 is its medial triangle, the cir-
cumcircle (O) of the latter is its ninepoint circle, G;C; are its altitudes, its ortho-
center H' is the symmetric of H with respect to O. and the straight lines C;B;
are concurrent in H’. Let P be the point where the circle (0B:1C1) cuts OH', i.e.,
OH. We have H'O-H'P=H'C,-H'B,=H'C;- H'B;; hence the circles  (OB;C;)
intersect again in P. The inverse of (0B1C;) with respect to (0) is B1Cy, and hence
OH'-OP =0C2=R?". Since OH-0OD =R? and OH =H'0, we must have OD =PO.

Solved also by H. Eves using inversion with respect to O and power —R?
which gives a concise proof.
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Solution to Problem 1107:
American Mathematical Monthly, 61, (1954), 643.

A Pencil of Planes Associated with a Tetrahedron
E 1107 [1954, 194]. Proposed by Victor Thébault, Tennie, Sarthe, France

On the edges AB, AC, AD of a tetrahedron ABCD are marked points
M, N, Psuchthat AB=nAM,AC=(n+1)AN, AD=(n+2)AP. Show that the
plane MNP contains a fixed line as # varies.

I. Solution by Hiiseyin Demir, Zonguldak, Turkey. From the relations it is
evident that the ranges of points [M ] and [P] are projective. But since 4 is a
self-corresponding element, the projectivity is a perspectivity. Hence MP is on
a fixed point P’. Similarly MN is on a fixed point N’. Hence the plane MNP is
on the fixed line P'N’.

Solution to Problem 1142:
American Mathematical Monthly, 62, (1955), 444.
Semi-vertical Angle of a Right Circular Cone

E 1142 [1954, 711]. Proposed by M. S. Klamkin, Polytechnic Institute of
Brooklyn, N. Y.

Find the semi-vertical angle of a right circular cone if three generating lines
make angles of 2a, 283, 2v, with each other.

Demir gave the equivalent answer

16 sin? « sin? B sin? ¥

sin? ¢ = — ; = -
0 sina sinfB siny

sihe 0 siny sing
sing siny 0 sinea

siny sinf sina 0
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Solution to Problem 1148:
American Mathematical Monthly, 62, (1955), 495.

Two Equiareal Triangles
E 1148 [1955, 40]. Proposed by Victor Thébault, Tennie, Sarthe, France

Let a, b, ¢ be arbitrary points on the sides BC, CA, AB of triangle ABC, and
let A’, B’, C’ be the reflections of 4, B, C in the midpoints of the segments b, ca,
ab. Show that triangles abc and A’B’C’ have equal areas.

Solution by Hiiseyin Demir, Zonguldak, Turkey. Let a’, b’, ¢’ be the reflec-
tions of a, b, ¢ in the midpoints of BC, CA, AB. Since, by a well known property,

abc and a'b’c’ have equal areas, we shall prove that a’b’¢’ and A’B’C’ have equal
—_ = -  —

areas. From aB' Bc c’A, aC’'=Cb=b'A we get b'¢’=B'C’. Similarly ¢'a’
=(C'A’, a'b’=A’'B’, and triangles a’b’c’ and A’B’C’ are actually congruent.
Also solved by W. B. Carver, A. R. Hyde, M. S. Klamkin, D. C. B. Marsh,
C. S. Ogilvy, C. F. Pinzka, Roscoe Woods, and the proposer.
Pinzka called attention to two similar results in R. A. Johnson, Modern
Geometry (1929), p. 80. Carver, Hyde, Ogilvy, and Woods gave simple solutions
using oblique coordinates.

Editorial Note. The above solution shows that triangles a'd’c’, A’B’'C’ are
not only congruent, but also homothetic. It follows that if @, b, ¢ are collinear
on a line L, then 4’, B’, C’ are also collinear on a line L’ parallel to the reciprocal
transversal of L. Consequently, if L is a Simson line of triangle ABC, then L
and L’ are perpendicular.
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Solution to Problem 1166:
American Mathematical Monthly, 63, (1956), 42.

Chain of Circles in a Segment
E 1166 [1955, 364]. Proposed by Leon Bankoff, Los Angeles, Calif.

Let DE be a variable chord perpendicular to diameter 4B of a given circle
(0). The maximum circle (wo) inscribed in the smaller segment, DEB, touches
chord DE in C. The circle (w;) is tangent to (w,), (0), and DC and another
circle (ws) is tangent to (w;), (0), and DC. Find the ratio BC/CA for which the
radius of circle (wz) is a maximum.

Solution by Hiiseyin Demir, Zonguldak, Turkey. Denote the radii of (O) and
(w;) by R and 7, respectively. Let (a1), (w2) touch CD in Ci, Cs. Then we easily
get

CCy = 24/rory,  CiCa = 2+/111a.

From right triangles having hypotenuses Ow; =R —71, Ow; =R —r; we get

(1) (R - 27y + fl)z + drory = (R - f1)2,
(2) (R = 2ry + 72)? + 4(\/ror1 + V1) = (R — 1)
The value

r1 = ro(R — r))/R,
obtained from (1), when substituted in (2) yields
ro = (R — ro)%0/(R + r0)2

Now, introducing k2=BC/CA =r,/(R—r,) and applying the derivative test for
a maximum, we get

k= (V5= 1)/4

Also solved by G. B. Charlesworth, Walter Guber, A. R. Hyde, R. B.
Plymale, and the Proposer. Some of these solutions were based upon a mis-
interpretation of the figure of the problem.

The Proposer remarked that the problem was suggested by an attempt to
display circle (wz) to best advantage in a diagram. The following interesting
allied facts were pointed out by the Proposer:

1. Circles (wo) and (w:) are maximum when C coincides with O, but (w.) is
a maximum when BC/CA = (+/5—1)/4, with the unexpected consequence that
CB 1is the side of a regular decagon inscribed in the circle on AC as diameter.

2. ¥2(max) =1’1/2.

3. r,=24B cos® u/[tan* (u/2)+cotr (u/2)]?, u being the angle ABD,
(communicated to the Proposer by Victor Thébault).

4. r,isrational if AC and CB are rational.
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Solution to Problem 1687:
American Mathematical Monthly, 72, (1965), 425.

An Application of Menelaus’ Theorem
E 1687 [1964, 430]. Proposed by Daniel Pedoe, Purdue University

UVW is an equilateral triangle; A, B, C are the respective midpoints of the
sides VW, WU, UV; A’ is any point on line VW, B’ any point on line WU, and
C" any point on line UV. If P is the intersection of BC and B'(C’, Q of CA and
C'A’, R of AB and A'B’, prove that (1) the lines AP, B’Q, C'R are concurrent,
(2) the areal coordinates of the point of concurrency with respect to triangle
ABC are, with a suitable sign convention, (44’)~1:(BB")~1:(CC’)".

Generalize both (1) and (2) by means of an affine projection, and generalize
(1) by a general projection.

I. Solution by Huseyin Demir, Middle East Technical University, Ankara,
Turkey. (1) We first set BC=CA=AB=1andconsider VW, WU, UV; AA'=d’,
BB'=b', CC'=¢' as directed segments. Let A, u, » be the ratios in which P, Q, R
divide the sides of A’B’C’. Applying the Menelaus theorem to the pair UC'B’,
CB we get (PB'/PC')-(CC'/CU)-(BU/BB")=1 or AN-=)1/b)=1; ie,
A= —=0b'/c. Considering also two other pairs we get u= —¢’/a’ and v=—a’/b’
which give A-pu-» = —1 proving the concurrency at a point 7.

(2) We denote the areal coordinates of I" by the matrices (I'm’n") and (I m n)
in the triangles 4’B’C’ and A BC respectively, and from I':n' = —p, m":lI'= —»
we obtain

d a 1 11

(GI) Uim':n' = l’:—'— l’:?' = :](_":'ST:;_ .

Now to find [:m:n=(l m n), let us first introduce the following symbol
L I s
LMN/XYZ = |my ms ms
ny mg Mg

where the columns are the areal coordinates of L, M, N in the triangle X YZ.

We have
0 1—-d 144 -1 1 1

B) A'B'C’/UVW =|14+b O 1-b' |, UVW/ABC = 1 -1 14,

1-d 14¢ 0 1 1 -1
and T/A'B'C'=(1/a’ 1/b’ 1/¢"). It is not difficult to see the general identity
(v) T/ABC = (T/A'B'C")-(A'B'C'/JUVW)-(UVW /ABC).
Substituting () and (8) in (y),

0 1—d 1—-4 -1 1 1

(Imn)=0Umn)-|1=0 0 1= 1 -1 1
1—-¢ 1-¢ 0 1 1 -1
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2 24’ —24d’
= 1/d 1/ 1/)| —20" 2 26 | = (2/a' 2/ 2/c")
2 =2 2
) T/ABC = l:m:n = 1/a’:1/0':1/c = AA"1:BB'-1:CC'"-L.

(3) An affine projection transforms UVW into an arbitrary triangle and
ABC into its medial triangle in which the concurrency holds.

In an affine transformation the ratio of segments and the ratio of areas being
preserved, replacing AA4’/1, BB'/1, CC'/1 by AA’/VW, BB’/WU, CC'/UV, (8)

becomes
AA\"! y BB\"1 /CC'\!
T/ABC=( ) :( ) (——) 4
Vw wuU uv
By a general projection the perspective triangles UVW and ABC are trans-
formed into such triangles. So the generalization is obtained for any UVW and
for any inscribable triangles A BC and A’B’C’, such that AU, BV, CW are con-
current. Furthermore, the point P has the same areal coordinates in 4 BC and
A'B'C.
Also solved by the proposer who points out that the generalization of (1) to general projec-
tions occurs as a problem in a 1909 Mathematical Tripos, Part 1.
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Solution to Problem 2122:
American Mathematical Monthly, 76, (1969), 833.

An Extension of Napoleon's Theorem
E 2122 [1968, 898]. Proposed by Stanley Rabinowitz, Far Rockaway, N. Y.

Let D, E and F be points in the plane of a nonequilateral triangle ABC so
that triangles BDC, CEA and AFB are directly similar. Prove that triangle
DEF is equilateral if and only if the three triangles are isosceles (with a side of
triangle A BC as base) with base angles 30°. (The “if” part, Napoleon’s theorem,
is known. See the MATHEMATICS MAGAZINE, 1966, p. 166.)

Solution by Huseyin Demir, Middle East Technical University, Ankara,
Turkey. The following lemma is easily proved:

LEMMA. A triangle in the complex plane with vertices @, b and ¢ is equilateral
if and only if a2+b%2+4¢c2—bc—ca—ab=0.

Let a, b, c; d, e, f be the affixes of the vertices of the triangles ABC, DEF.
Since the triangles DBC, ECA, FAB are directly similar, then for some ¢

d=0b+ (c — b, e=c+(@—ot, f=a+ (b— a)
Forming the expression U=d?+e?*+4f*—ef—fd—de, we find
U= (a®+ b2+ ¢ — bc — ca — ab)(31* — 3t + 1).
If ABC is equilateral, then by the lemma, U =0, and again by lemma, DEF
is equilateral. Now suppose that DEF is equilateral, that is U=0 by lemma.

Since ABC is supposed to be non-equilateral, we must have 3/*—3t41=0.
Solving for ¢, we find t=%+/3 cis (£ 7/6) which proves the assertion.

Also solved by Walter Bluger, Slobodan Cuk (Yugoslavia), M. G. Greening (Australia).
L. Kuipers, C. F. Merrill, and the proposer. Jordi Dou (Spain) shows the uniqueness of the solution.
A. W. Walker mentions a weaker result given in a paper by Wong, this MoNTHLY, 48 (1941), p. 530.
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Solution to Problem 2398:
American Mathematical Monthly, 81, (1974), 89.

A Result Known to Johnson

E 2398 [1973, 202]. Proposed by C. W. Dodge, University of Maine at Orono

Prove that the point of intersection of the diagonals of a parallelogram lies on
the pedal circle for any vertex with respect to the triangle formed by the other three

vertices.

I. Solution by Huseyin Demir, Middle East Technical University, Ankara,
Turkey. Let ABCD be a given parallelogram with I as center. Let the projections
of D on sides BC, CA, AB of triangle ABC be A’, B', C’, respectively. If xD = =n/2,
the pedal triangle degenerates into the Simson line AC containing the point I.

We give the proof in the case where ¥D > /2 and A’ is on the segment BC
and C’ is on the segment AB. Similar proofs may be given in other cases. We need
only show that xC'A’'l = ¥ AB’C’. In obtaining this equality we use the properties
that AC'B'D and DC'BA’ are cyclic and triangle DIA’ is isosceles. We have

XC'A'l = ¥C'A'D — XIA'D = £C'BD — ¥IDA' = £ A'DC
= 2 - XC = 72— XA = XADC' = XAB'C’.

II. Solution by A. W. Walker, Toronto, Canada. Let D be the reflection of the
vertex A of triangle ABC in the midpoint M of the side BC. If BAC is a right triangle,
the pedal “‘circle’’ of D for triangle ABC is the line BC; if not, let E be the meet
of the lines tangent to circle ABC at B and C. Then BD and BE are isogonal con-
jugate lines in the angle ABC, and likewise for CD and CE in angle BCA, so D and
E are isogonal conjugate points in triangle ABC and therefore (R. A. Johnson,
Modern Geometry, p. 155) have a common pedal circle passing through the pro-
jection M of E on BC.

REMARK. E2398 is a special case of the theorem: For a plane non-orthocentric
quadrangle ABCD there are four pedal circles (and four nine-point circles) passing
through the center of the rectangular hyperbola ABCD (Johnson, p. 242).

Also solved by Giinter Bach (Germany), Leon Bankoff, Howard Eves, Michael Goldberg,
M. G. Greening (Australia), Lew Kowarski, L. Kuipers, and the proposer.
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List of Proposals composed by Hiiseyin Demir
[1] Proposal 208, Mathematics Magazine, 28, (1954-1955), 27.

[2] Proposal 217, Mathematics Magazine, 28, (1954-1955), 103.
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[20] Proposal 425, Mathematics Magazine, 34, (1960-1961), 109.
[21] Proposal 437, Mathematics Magazine, 34, (1961), 174.

[22] Proposal 440, Mathematics Magazine, 34, (1961), 237.

[23] Proposal 458, Mathematics Magazine, 34, (1961), 364.

[24] Proposal 472, Mathematics Magazine, 35, (1962), 55.

[25] Proposal 487, Mathematics Magazine, 35, (1962), 186.

[26] Proposal 498, Mathematics Magazine, 35, (1962), 309.

[27] Proposal 509, Mathematics Magazine, 36, (1963), 133.

[28] Proposal 517, Mathematics Magazine, 36, (1963), 197.

[29] Proposal 529, Mathematics Magazine, 36, (1963), 264.

[30] Proposal 537, Mathematics Magazine, 37, (1964), 55.

[31] Proposal 544, Mathematics Magazine, 37, (1964), 119.

[32] Proposal 563, Mathematics Magazine, 37, (1964), 276.

[33] Proposal 572, Mathematics Magazine, 38, (1965), 52.

[34] Proposal 587, Mathematics Magazine, 38, (1965), 179.

[35] Proposal 599, Mathematics Magazine, 38, (1965), 241.
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[36] Proposal 600, Mathematics Magazine, 38, (1965), 317.
[37] Proposal 609, Mathematics Magazine, 39, (1966), 69.
[38] Proposal 628, Mathematics Magazine, 39, (1966), 246.
[39] Proposal 639, Mathematics Magazine, 39, (1966), 306.
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Proposal 208, Mathematics Magazine, 28, (1954-1955), 27.

208. Proposed by Huseyin Demir, Zonguldak, Turkey.
Evaluate the following trigonometric expressions without using nu-
merical tables:
A= cos 5° cos 10° cos 15° ... cos 75° cos 80° cos 85°,
B=cos 1° cos 3° cos 5° --- cos 85° cos 87° cos 89°,

C=cos 4° cos 8° cos 12° ««+ cos 80° cos 84° cos 88°.
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Proposal 217, Mathematics Magazine, 28, (1954-1955), 103.

217. Proposed by Huseyin Demir, Zonguldak, Turkey.

Prove that a necessary and sufficient condition for the convex polygon
AL A, A3 A, to be inscriptable is that:

AL AL ALA, ALAL AL A,
b | AL Agdy AgAy A A
Ay Ay Ay Ay Ag Ay A Ay
AyAy AgA, A AL A4,

where 4, . denotes the distance between the vertices A; and Aj if 7 >,

and A. AL = 4. A .
] 1 LI

Proposal 227, Mathematics Magazine, 28, (1954-1955), 160.
227. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let Al Bl' A2 82 and A3 B3 be three bars of lengths 11, 12 and
13 with weights Wl, W2 and WB respectively. The ends B,, B, and B3
rest on a horizontal surface while the other ends A;, A, and 44
are supported by the bars 4, Bj, A, Byand 4, B, respectively. Find
the reactions R,, R, and RB at By, B, and 83.

Proposal 234, Mathematics Magazine, 28, (1954-1955), 234.

2 3 4. Proposed by Huseyin Demir, Zonguldak, Turkey.

Given an m by n rectangular lattice. containing mn points, find
the total number of (a) squares, (b) rectangles having vertices at
the points of the lattice. Consider m > n.
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Proposal 242, Mathematics Magazine, 28, (1954-1955), 284.

242. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let A, B', C' be the points dividing the sides of triangle ABC in the
ratiok, and let A", B” ,C" be the points dividing the sides of triangle
A'B'C' in the ratio 1/k. Prove that the triangle A” B” C''is homothetic with
the original triangle ABC.

Proposal 248, Mathematics Magazine, 29, (1955-1956), 46.

248. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let [ and [, be two plane curves. Lett be a variable line inter-
secting these curves at the points¥, 6 ,¥#, where the tangents t, and
t, to the curves are parallel to each other. Prove that the centers of
curvature G, and C, of [ and [; at M, and M, are collinear with the
characteristic point(C of the straight line t.

Proposal 258, Mathematics Magazine, 29, (1955-1956), 163.

258. Proposed by Huseyin Demir, Zonguldak, Turkey.

A triangle 4ABC inscribed in a circle varles such that 4B and AC
keep fixed directions. Find the locus of the orthocenter .

Proposal 266, Mathematics Magazine, 29, (1955-1956), 222.

266. Proposed by Huseyin Demir, Zonguldak, Turkey.

If M and ¥’ are points inverse to each other with respect to the
circuncircle of a triangle ABC, then prove that:

/ BMC + /BM'C = 2 /A
/ CHA + /OM'A = 2 /B
/ AME + /MM'B = 2 /C
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Proposal 298, Mathematics Magazine, 30, (1956-1957), 164.

298. Proposed by Huseyin Demir, Kandilli, Bolgesi, Turkey.

Let y =f (x) be a curve with the following properties
a) f(x) = f(-x)
b) fAx) >0 for x >0
c) f'(x) >0

Determine the weight per unit length w(x) at the point (x,y) such

that when the curve is suspended under gravity by any two points on
it, the curve will keep its original shape.

Proposal 304, Mathematics Magazine, 30, (1956-1957), 223.
304. Proposed by Huseyin Demir, Kandilli Bolgesi, Turkey.

Let ABC be a triangle, AB # AC, inscribed in a circle (0, and let
K be the point where the exterior angle bisector of A meets 0. A
variable circle with center at K meets AB, AC at E and F respectively,

such that A is not an interior point of KEF . Find the limiting posi-
tion m of the common point M of EF, BC as EF approaches BC.

Proposal 334, Mathematics Magazine, 31, (1957-1958), 228.

334. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Find the simplest expression for the area S enclosed by the arc AM of
a cycloid, the arc TM of the rolling circle Q (a) and the base line segment
AT.

Proposal 349, Mathematics Magazine, 32, (1958-1959), 47.

349, Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.
Y

It ABCD, AKBK and CEF@G are squares of the same orientations, prove
that B bisects DF.
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Proposal 372, Mathematics Magazine, 32, (1958-1959), 220.

372. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Tur]cey
Prove the identity

sin? (6 1+t5’2+---+it9n) = sin201+--.-+sin26n+2 z
1<i<y<n

sin6, sinﬂj cos(0,+20,,  +--+ 20,_ 1+(9j).

Proposal 380, Mathematics Magazine, 32, (1958-1959), 278.

380. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Solve the system of equations

z(z-a) + u(z+u) = 0
YWz-b) + u(y+u) = 0

2(y—c) + ulz+u) =

where abc £0 and ¢~ '+ 6~ 4~ = L

Proposal 384, Mathematics Magazine, 33, (1969-1960), 51.

384. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.
Let (a,;) be a matrix of nth order the sum of the elements of whose
rows equals 1. Prove that the totality [(a%-j)] form a group of infinite order.

Proposal 398, Mathematics Magazine, 33, (1969-1960), 165.
398. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Determine the roots of the equations :c2+y1x+y2 = 0, y2+m1y+m2 =0

where the coefficients (real numbers) in one equation are the roots of the
other.
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Proposal 407, Mathematics Magazine, 33, (1959-1960), 225.

407. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

The twelve edges of a cube are made of wires of one ohm resistance
each. The cube is inserted into an electrical circuit by :
a) two adjacent vertices,

b) two opposite vertices of a face,

c¢) two opposite vertices of the cube.
Which offers the least resistance?
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Proposal 415, Mathematics Magazine, 33, (1959-1960), 296.

415. Proposed by Huseyin D emir, K andilli, Eregli, Kdz., Turkey.
Prove

n

(g) cos(p)z sin(n-p)z = 2" ' sinnz .
p=0

Proposal 419, Mathematics Magazine, 34, (1960-1961), 49.

419. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Determine the path in a vertical plane such that when a particle moved,
under gravity, with an initial velocity v, from a point of the path, the par-

ticle maintained a constant speed along the path. Assume no friction.

Proposal 425, Mathematics Magazine, 34, (1960-1961), 109.

425. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

If n—1 and n+1 are twin prime numbers, prove that 3¢(n) < n where
¢ denotes Euler’s ¢-function.

Proposal 437, Mathematics Magazine, 34, (1961), 174.

437. Proposed by Huseyin Demir, Kandilli, Evegli, Kdz., Turkey.
Prove or disprove the statement: The number of odd coefficients in

the binomial expansion of (a+ »nl s a power of 2, the exponent [n] being

the number of 1’s appearing in the expression of n in the binary number
system.
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Proposal 440, Mathematics Magazine, 34, (1961), 237.

440. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Consider a packing of circles of radius r such that each is tangent to
its six surrounding circles. Let a larger circle of radius # be drawn con-
centric with one of the small circles. If N is the number of small circles
contained in the larger circle, prove that

n
N=1+6n+6 Z [%(\/4n2m3p2 - )]
p*—*l

where n = [1/2(1%-—1)], the square brackets designating the greatest integer

function.

Proposal 458, Mathematics Magazine, 34, (1961), 364.

458. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
A student used DeMoivre’s theorem incorrectly as

. # n - »
(sin« + icos=) = Sinn« + % COS N .

For what values of « does the equation hold for every integer n?

Proposal 472, Mathematics Magazine, 35, (1962), 55.

472. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Let (C) be a conic and M be a variable point on it. Let 7 be the point
symmetric to M with respect to the main axis, and ¢ the tangent line at 7.
Denote the intersection of the perpendicular from M to ¢ with the line join-
ing T to the center of the conic by /. If ¥” is symmetric to ¥ with respect
to I, prove that

1. The locus of M’ is another conic (C”) of the same kind as (C).
2. The conics (C) and (C”) are confocal,

Proposal 487, Mathematics Magazine, 35, (1962), 186.
487. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Find the square root of the matrix (z 2) .
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Proposal 498, Mathematics Magazine, 35, (1962), 309.

498. Proposed by Huseyin Demir, Middle East Techwical University, Ankara,
Turkey.

If m and #» are integers and 4, D are their g.c.d. and l.c.m. respectively, and
d(n) denotes the number of divisors of n, ¢(n) being the Euler function, prove

that:
(1) d(m)d(n) = d(8)d(D)
(2) d(m)d(n) = ¢(8)¢(D)

Proposal 509, Mathematics Magazine, 36, (1963), 133.
509. Proposed by Huseyin Demir, Middle East Technical University, Ankara,

Turkey.
Solve the cryptarithm
UN I T ED
S 1ranr ES
A M ER I CA

in the base 11, introducing the digit c.

Proposal 517, Mathematics Magazine, 36, (1963), 197.

517. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let F and d be the focus and directrix of a parabola. If M and N are any
two points on the parabola and M’, N’ are their respective projections on d,
show that

Area FMN

Area N IIMN = Constant.
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Proposal 529, Mathematics Magazine, 36, (1963), 264.

529. Proposed by Huseyin Demair, Middle East Technical University, Ankara,
Turkey.

A cycloid (cardioid) rolls on a straight line without sliding. Prove that the
locus of the center of curvature of the curve at the point of tangency is a circle
(ellipse).

Proposal 537, Mathematics Magazine, 37, (1964), 55.

537. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Determine the relative positions of an equilateral triangle and a square in-
scribed in the same circle so that their common area shall be an extremum.

Proposal 544, Mathematics Magazine, 37, (1964), 119.

544, Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Solve the cryptarithm (alphametic)
ONE+TWO+SIX=NINE
in the base 10, with the following conditions:
a) ONE<TWO<SIX
b) 2| TWO, 6| SIX, 9| NINE where a|b means “a divides b.”

Proposal 563, Mathematics Magazine, 37, (1964), 276.
563. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let 4, B’, A’, B be four consecutive vertices of a regular hexagon. If M is
an arbitrary point of the circumcircle (in particular on arc 4’B’) and MA, MB
intersect BB’ and A4’ in the points E and F respectively, then prove that:

(a) XMEF = 3 MAF
(b) XMFE = 3{MBE.
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Proposal 572, Mathematics Magazine, 38, (1965), 52.

572. Proposed by Huseyin Demar, Middle East Technical University, Ankara,
Turkey.

To the memory of President Kennedy. Mr. J. F. Kennedy was killed on
November 22, 1963. That is, on the day 11-22-1963. Solve the cryptarithm

JF-(KEN + NEDY) = (11 + 22)-1963

in the decimal system.
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Proposal 587, Mathematics Magazine, 38, (1965), 179.

587. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Prove the following inequality

# -+ sin 6\?2 1
(—————-—) -[—cos“?ﬂ - (—r <6< +m).
T

Proposal 599, Mathematics Magazine, 38, (1965), 241.

599. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

If @, b, and ¢ are any three vectors in 3-space, then show that the vectors
ax(bxc), bx(cxa), cx(axd)

are linearly dependent.

Proposal 600, Mathematics Magazine, 38, (1965), 317.

600. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

If the area of a triangle ABC is S and the areas of the in- and ex-contact
triangles are T, T, 1%, T, then show that

(1) Ta+Tb+Tc""T=ZS
(2) T+ Tit+ T - T =0.
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Proposal 609, Mathematics Magazine, 39, (1966), 69.

609. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Solve the following cryptarithm in the decimal system:

4-NINE = 9-FOUR

Proposal 628, Mathematics Magazine, 39, (1966), 246.

628. Proposed by B. Suer and Huseyin Demir, Middle East Technical University,
Ankara, Turkey.

Solve the alphametic,

COS? + SIN? = UNO?
in the decimal system.

Proposal 639, Mathematics Magazine, 39, (1966), 306.

639. Proposed by Huseyin Demir, Middle East Technical University, Amnkara,
Turkey.

Let ABCD be a convex quadrangle and P be the intersection of diagonals
AC and BD. Let the distance of P from the sides AB=a, BC=b, CD=c¢, DA
=d be x, y, 2, and ¢ respectively. Prove that

ct+y+zt+t<ile+d+c+d.

Proposal 649, Mathematics Magazine, 40, (1967), 100.

PROBLEMS
649. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.
Solve the cryptarithm THREE
+ FOUR
SEVEN

in the decimal system such that:
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3 does not divide 7" H R E E in which the digit 3 is missing;
4 does not divide F O U R in which the digit 4 is missing;
7 does not divide S E V E N in which the digit 7 is missing.
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Proposal 680, Mathematics Magazine, 41, (1968), 42.

680. Proposed by Huseyin Demair, Middle East Technical University, Ankara,
Turkey.

Let E be an ellipse and #/, ¢’ be two variable parallel tangents to it. Consider

a circle C, tangent to ¢/, ¢’ and to E externally. Show that the locus of the center
of C is a circle.

Proposal 724, Mathematics Magazine, 42, (1969), 96.
724. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Find the probability that for a point P taken at random in the interior of a
triangle ABC (a=b=c), the distances of P from the sides of ABC form the
lengths of sides of a triangle.

Proposal 738, Mathematics Magazine, 42, (1969), 214.

738. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

There is a river with parallel and straight shores. 4 is located on one shore
and B on the other, with AB =72 miles. A ferry boat travels the straight path
AB from A to B in four hours and from B to 4 in nine hours. If the boat’s speed
on still water is v=13 mph, what is the velocity of the flow?
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Proposal 743, Mathematics Magazine, 42, (1969), 267.

743. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let P be an interior point of a regular tetrahedron, T'=A4,4,4344, with
pi=PA;, and let x;; denote the distance of P from the edge 4;4;. Then prove

4
Z i = 2\/3/3 E Xijy
i=1

i<J

equality holding if and only if P is at the center O of 7.

Proposal 756, Mathematics Magazine, 43, (1970), 103.
756. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Determine closed and centrally symmetric curves C, other than circles, such
that the product of two perpendicular radius vectors (issued from the center)
be a constant.

Proposal 763, Mathematics Magazine, 43, (1970), 166.

763. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Prove:

1 2 I 4 1 1 1
(bt o= )= (”z;ﬁ"s: o Yttt e )

Proposal 775, Mathematics Magazine, 43, (1970), 278.
775. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

| 1
Prove f \q/l — x?dx = f \p/l — xtdx, where p, ¢ > 0.
0 0
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Proposal 806, Mathematics Magazine, 44, (1971), 228.

806. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let H be the orthocenter of an isosceles triangle A BC, and let AH, BH, and
CH intersect the opposite sides in D, E, and F, respectively. Prove that the
incenters of the right triangles HBD, HDC, HCE, HEA, HAF, and HFB lie on

a conic.

Proposal 839, Mathematics Magazine, 45, (1972), 228.

839. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Given three boxes each containing w white balls and r red balls identical in shape.
Take a ball from the first box and put it in the second box, then take a ball from the
second box and put it in the third, and finally take a ball from the third box and
put it in the first. Find the probability that the boxes have their original contents
as to color.

Proposal 859, Mathematics Magazine, 46, (1973), 103.

859. Proposed by B. Suer and H. Demir, Middle East Technical University,
Ankara, Turkey.

Solve the cryptarithm
THREE + NINE = EIGHT + FOUR.

Proposal 916, Mathematics Magazine, 47, (1974), 286.

916. Proposed by H. Demir, M.E.T.U., Ankara, Turkey.

Let XYZ be the pedal triangle of a point P with regard to the triangle ABC.
Then find the trilinear coordinates x, y, z of P such that

YA+ AZ = ZB + BX = XC + CY.
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Proposal 963, Mathematics Magazine, 49, (1976), 43.

963. Characterize convex quadrilaterals with sides a, b, ¢, and d such that
a b g d
d a b c

C d a b

[Hiiseyin Demir, Ankara, Turkey.]

Proposal 998, Mathematics Magazine, 49, (1976), 252.

998. Characterize all triangles in which the triangle whose vertices are the feet of the internal angle
bisectors is a right triangle. [ Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.|

Proposal 1197, Mathematics Magazine, 57, (1984), 238.

1197. Characterize the triangles of which the midpoints of the altitudes are collinear. [ Hiwseyin
Demir, Middle East Technical University, Ankara, Turkey.]

Proposal 1206, Mathematics Magazine, 58, (1985), 46.

1206. Let ABC be a triangle with sides a, b, and ¢ and semiperimeter s. Let the side BC be
subdivided using the points B= Py, P,..., P,_,, P,= C in order. If r, is the inradius of triangle
AP, P, for i=1,...,n, prove that

1 s
where h, is the length of the altitude from vertex A. [ Hiisseyin Demir, Middle East Technical
University, Ankara, Turkey.)

Proposal 1211, Mathematics Magazine, 58, (1985), 111.

1211. Find the locus of points under which an ellipse is seen under a constant angle. [ Hiiseyin
Demir, Middle East Technical University, Ankara, Turkey.]




6. PROPOSALS FOR MATHEMATICS MAGAZINE

Proposal 1298, Mathematics Magazine, 61, (1988), 195.
1298. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.
A quadrilateral ABCD is circumscribed about a circle, and P,Q,R,S are the points
of tangency of sides AB, BC,CD, DA respectively. Let a = |AB|, b = |BC|, ¢ = |CD|,
d=|DA|, and p = |QS|, g = |PR|. Show that

ac bd

== 3

p* q
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Proposal 1305, Mathematics Magazine, 61, (1988), 261.
1305. Proposed by H. Demir and C. Tezer, Middle East Technical University,

Ankara, Turkey.
Let Py=B, P,, P,,..., P, = C be points, taken in that order, on the side BC of the

triangle ABC. If r,r, and h denote respectively the inradii of the triangles ABC,
AP,_ P, and the common altitude, prove that

- 2r, 2r
H(I_T)”‘"h"

i=1

Proposal 1327, Mathematics Magazine, 62, (1989), 274.
1327. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let the sides PQ, QR, RS, SP of a convex quadrangle PQRS touch an inscribed
circle at A, B, C, D and let the midpoints of the sides AB, BC, CD, DA be E, F, G,
H. Show that the angle between the diagonals PR, QS is equal to the angle between

the bimedians EG, FH.

Proposal 1356, Mathematics Magazine, 63, (1990), 274.
1356. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,

Turkey.

Let P, Q be points taken on the side BC of a triangle ABC, in the order B, P,Q,C.
Let the circumcircles of PAB, QAC intersect at M (# A) and those of PAC, QAB at
N. Show that A, M, N are collinear if and only if P and Q are symmetric in the

midpoint A" of BC.
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Proposal 1371, Mathematics Magazine, 64, (1991), 132.

1371. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let A, B, and C be vertices of a triangle and let D, E, and F be points on the
sides BC, AC, and AB, respectively. Let U, X,V,Y,W,Z be the midpoints of,
respectively, BD, DC, CE, EA, AF, FB. Prove that

Area( A UVW) + Area( A XYZ) — %Area( A DEF)

is a constant independent of D, E, and F.

Proposal 1377, Mathematics Magazine, 64, (1991), 197.
1377. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let DEF be a variable triangle inscribed in triangle ABC, and let U, X, V,Y, W, Z
be the midpoints of the line segments BD, DC, CE, EA, AF, and FB, respectively.

Show that the expression
|[UVW| +|XYZ| - 1| DEF|

for areas is constant.

Proposal 1405, Mathematics Magazine, 65, (1992), 265.

1405. Proposed by Hiiseyin Demin, Middle East Technical University, Ankara,
Turkey.

Two circles inscribed in distinct angles of a triangle are isogonally related if the
tangents from the third vertex not coinciding with the sides are symmetric with
respect to the bisector of the third angle. Given three circles inscribed in distinct
angles of a triangle, prove that if any two of the three pairs of circles are isogonally
related then so is the third pair.
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Solution to Proposal 208:
Mathematics Magazine, 28, (1954-1955), 27.
I.Solution by E. P. Starke, Rutgers University.
J—Q A= cos 5° cos 10° .. cos 40° 'sin 40°... sin 10° sin 5°
= sin 10° sin 20°... sin 80°/28,

by use of the double-angle formula. A repetition of the same device

gives: 2127 4 =sin 20° sin 40° sin 60° sin 80°= 3 k/2, say,

where k = sin 20%sin 40° sin 80°) = sin 20°(sin260° - sin220°)

= Y%(3 sin 20°-4 sin?20°) = ¥ sin 60° = [3/8. So 4 =3.233/2
Similarly B = cos 1° sin 1° cos 3° sin 3° ...

cos 43° sin 43° cos 45%22 2" B =sin 2 °sin 6°%sin 10°...sin 86°=C.

Let x = cos 2\0 cos 6° cos 10% .. cos 86°.

Then 222.222]2 B.x = sin 4° sin 12%sin 20% ++ sin 172°

sin 4° sin 80 sin 12° sin 16° *++ sin 88°= X,
whence B = 2'89/2 and C = 2722,

91



92 7. SOLUTIONS OF PROPOSALS

IL Solution by H. M. Feldnan, Washington University, St.Louis
Missouri.

From the identities

P (x?- 1)(x2"-+x2"°%-~--+1):I(xz- 1) ﬁi'%xz- 2x cosl%z'+l) and
| aey +1 )

n
x2ntl = (x4 D) (220 x2n0hig0) = (x+1)k!1(x2-2xcos§§;%+1)

we get, by letting x = %1, the following relations:

n-1 n=1

[ sin — = ] cosfiz =9+l [ .
1 2n 1 n
-1 b n _ ~
"I sin 2L 2tin Msin —2kTl _gen
B 1 2(2n+1)

By means of these relations, we find:

A=213172)
B = 2—45 \r_i
C = 2~—22

Also solved by Leon Bankoff, Los Angeles, California; Kwan Moon
(partially), Mississippi State College; George Mott, Republic Aviation
Corp., New York; T. F. Mulcrone, St. Charles College, Louisiana;
L. A. Ringenberg, Eastern Illinois State College; Chih-yi Wang, Umver-
sity of Minnesota; Hazel S. Wilson, Jacksonville State College, Alabama
and the proposer,

Solution to Proposal 217:
Mathematics Magazine, 28, (19_54—1955), 103.

Solution by H., M. Feldman, St. Louts, Missourt

Since AiAi must clearly be zero, the determinant is skew-symmetric
and its value 1s

[(A A (A A,) + (A A4, A + (A, 404, 4)))°

The vanishing of the expression within the brackets 1s a necessary
and sufficient condition for the quadrilateral to be 1inscriptable in
a circle (Ptolamy’'s Theorem).

Also solved by Ben K. Gold, Los Angeles City College; M. S.

Klamklin, Polytechnic Institute of Brooklyn, E. P. Starke; Rutgers
University, Chih-yi Wang, University of Minnesota and the proposer.
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Solution to Proposal 227:
Mathematics Magazine, 28, (1954-1955), 160.

Forces In fiquilibrium

227. [January 1955] Proposed by Huseyin Demir, Zonguldak, Turkey.

Let A,B,, A,B, and A383 be three bars of lengths 1,, 1, and 1,
with weights W,, W, and W3 respectively. The ends Bl' B, and 33 rest
on a horizontal surface while the other ends 4,, Az and A3 are sup-
ported by the bars ABBB’ AB, and A B, respectively. Find the reactions
R,, R, and 33 at B,, B, and BB'

Solution by the proposer. Let the reactions of the bars at the ends
A,, A, A3 be denoted by r,, r,, ry and the lengths A4, A.B,: A2A3,
4382; 4341, 4183 by a;, by; a,, by, as, b3 respectively.
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Then considering the equilibrium of one of the bars, say A,B,, we have
by taking moments of the forces r,, r,, W;, R, at the point B‘l:

A 11W1—11r1+ blr2 £ B
Setting bi = kili (¢t =1,2,3) and considering the other equations

corresponding to the two other bars, we get the system of equations
with unknowns Fis Ty Tyl

YW

ry=kyr, 1

1
rz—-ker: /éwz

_ 1
r3—k3r1_ /zW3

The determinant .of this system being

1 -k 0
D=1]10 1 -k, :1—k1k2k3
—k3 0 1
we have
rl = (Wl F k1w2 + kikz'ws )/2 D
B = (W3 ++k3W1 + k3k1W2 )/2 D
and

Ry=Wi-r +r, =W-(W+ k1W2+klk2W3)/2D + Wyt kgt kzkswl)/ﬂ)
Ry = [(1 4 kojky 2k kyk )W, + (ky W, + ky ky= 1IW,]/2(1- ky kyky)
Ry = Lkg(kym 1IW, 4 (1 4+ kgky=2ksk k)W, + (kym 1IW]/2(1- kyk ko)
Ry = [lkg= W, + ky(kg= DW, 4 (1 + kiky= 2k ikok )W) /2(1- k ik e 5)

Also solved by George R. Mott, Republic Aviation Company.
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Solution to Proposal 234:
Mathematics Magazine, 28, (1954-1955), 234.

Solution by the proposer. We distinguish two kinds of squares. A
square is an N- or L-square according as their sides are or are not
parallel to the sides of the lattice.

Every L-square is inscribed in a unique N-square. By a p X p N-
square we mean one having p points on each of its sides. In such a
square are inscribed evidently p-2 L-squares. Including the N-square
itself the number is p-1. '

The number of p X p N-squares is easilv seen to be (m - p + 1)
(n - p +1). Hence the number =% p X p N-squares together with L -
squares inscribed in them is (p - 1)(m - p + D -p + 1). ﬁence
the required total number of sqg .ces 1s given by

N = z: (p -1)m-p+ n-p+1)

p=2
e D -1 -t )Y (b-D2+ 20 (p-1)°
n(n - 1) n(n - 1)@2n-1)  n?kn - 1)?
=mn — - (m+ n t
2 6 4
nin - 1)
=13 [6mn -2(m+ n)@n - 1) +3n(n - 1ﬂ

=n(n? - 1)(2m - n)/12.

No solution of the rectangular case has been received. Solutions
restricting the squares and rectangles to those with sides parallel

to the lines of lattice points were received from Julian H. Braun,
White Sands Proving Ground and E..P..Starke, Butgers University.

Braun noted that the restricted case was a variation of Problem F. 1127
of the American Mathematical Monthly.

Solution to Proposal 242:
Mathematics Magazine, 28, (1954-1955), 284.

Solution by P. W. Allen Raine, Newport News High School,Newport
News, Virginia. Let 4, B, C, A', B', C', A", B", C" represent the
vector coordinates of the respective points and k, a scalar quantity.
Thus
_kB+C B’ _kC.+ A

, _kA+ B
T k4l

» -_ . —_

k+l k+1

¢

and
gn_ B + kC' _kC + A + k°A + kB
1+k (1 +k)?

?

B' +kA' kA + B + kB + kC
T 1 +k - (1 +k)2 ’
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A' + EB' kB + C + K2C + k4
Cn:___ -

1 +k (1 + k)?

Now we can easily show that

1 -k + k2
A”-B”: ___.___(A_B),
(1 +k)2
1 -k + k2
Bu __Cn___._____,________(B_C)’
(1 + k)
1-k+k2
C" - A" =—————(C-4)
(1 + k)2

which tells us that the sides of the two triangles are parallel and
hence the triangles are homothetic, the homothetic ratio being

1 - k+ k2
(1 +k)?
Also solved by Maimouna Edy, Hull, P. Q., Canada; M. S. Klamkin,

Polytechnic Institute of Brooklyn; Chih-yi Wang, University of Mimesota
and the proposer.
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Solution to Proposal 248:
Mathematics Magazine, 29, (1955-1956), 46.

Solution by the proposer. Consideringz tihe new position t' of t

very close to t, we have M, M,'/sin 2O :C'Ml'i/sin W, where M.’
close to Ml on rl' and A@ = (t,t'); the angle between t and t'.

Infinitesimally

and similarly

ds /do = OM{/sin g, gy = (t,t,) 27

ds,/d6 = CM,/sin w,, T (t,t,) &7

Having sin u, = sin u,, as t, is parallel to t,

ds,/CM, = ds ,/CM,
which 1n turn vyields
(ds 1/dOL)CM A

(d32 /oloc)CM2

R/CM, = R,/Ch,

where da is the infinitesimal angle relative to the parallel normals
at M,V,, and R{,R, the corresponding radii of curvature. The last

ecuality proves the statement.

Also solved by Richard K. Guy, University of Malaya, Singapore

and Chih-yi Wang, University of Minnesota.

Solution to Proposal 258:
Mathematics Magazine, 30, (1956-1957), 47.

An Orthocentric Locus

258. [January 1956] Proposed by Huseyin Demir, Zonguldak, Turkey.
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A triangle ABC inscribed in a circle varies such that 4B and AC
keep fixed directions. Find the locus of the orthocenter H.

L. Solution by Major (I..S. Subba Rao, Defense Science Organization,
New Delht, India. The vertical angle A and the base £C are fixed in
magnitude. Let A;B,, be the isosceles trianzle satisfying the con-
ditions imposed on AbLC. Let P be tiie mid-point of the smaller of the
two arcs AC of the circum-circle and similarly ) the mid-point of
the arc 45. Let O be the centre of the circle. The points P andi)are
fixed.

Take the diameter through 4, as the y-axis and tue perpendicular
diameter as the x-axis. With reference to these axes we can represent

any point on the circle A5C by the parametric representation a cos t,
a sin t.

Let Blz(tz), (?1E(t3), PE(tl{.) aﬂd?,E(ts).

Noting that angle 4 8,0, angle A C.B, = 90°- A/2 it can be easily

37 _37r A ~ A
shown that tzm-é——A, t3——-—+A, tumg,tS—Z'n—E_

In any position of the triangle 483C let t = J B.0B =4 ClOC.
Then b = (t, + t) and C = (t3 + t). Further, EH being perpendicular
to AC is parallel to OP and similarly CY{ is parallel to OQ.

The equations to BH and CH are easily found to be

Si 4 A (t —35)
x1n2—ycosz—acos 5

d
an A A U

]

x Sin 5+y cos —

9 acos(t+—2‘).

Eliminating t between the two equations, the locus of H is found

to be
A 4
x2 Sin? — yz cos —
2 " 2 1
34 3
2 2 a’ Si 2
a® cos 5 n 5

This is an ellipse with its centre at O and semi axes

A 34
a Cos — a Sin —

2

and

Sin

{os

CH S
1o |
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(An interesting corollary to this is that the loci ot tne nine-
point centre and centroid of the triangle ABC are also ellipses).

II. Solution by the proposer. Let OX, OY be the lines parallel to
external and internal bisectors of A respectively. Let the altitude
AH intersect these fixed lines at X, Y. Since A0, AH are equally in-
clined to the bisectors of A, we have AX =AC=AY. Hence XY= 2{ = const.

We may think then of XY as a rod of constant length having the ends
moving on OX, OY. Now the angle A being constant, BC will envelop, or
the mid-point D of BC will describe a circle with center O. Hence
AH=20D=2R cos A = const. This proves that j is-a fixed point of
the moving bar XAY. Hence H describes an ellipse,

The semi-diameters of the ellipse are easily detemmined:

a=HY + AY=HA =R(1 + 2cosA), b =HX=XA—HA =R(1 - 2 cosA).

Also solved by J. W. Clawson, Collegeville, Pennsylvania; K. K. Guy,
University of Malaya, Singapore; Sister M. Stephantie, Georgian Court
College, New Jersey; Harry D. Ruderman, The Bronx, New York and Chih-yi
Wang, University of Minnesota.
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Solution to Proposal 266:
Mathematics Magazine, 30, (1956-1957), 105.

Points Inverse imn a Circumcircle
266.[March 1956] Proposed by Huseyin Demir, Zonguldak, Turkey.

If M and M’ are points inverse to each other with respect to the
circumcircle of a triangle ABC then prove that:

L BMC + LBM'C = 2/ZA
/ CMA + LCM'A =2/B
Z AMB+ LAM'B =2 /LC

I. Solution by Richard K. Guy, University of Malaya, Singapore.
In triangles COM and %'OC angle O is common and as OM + OM' = 0C 2 we

oc oM’
have o = —, Hence the triangles are similar and JQY'C = Y OM.

In the same way JOM'B =) (BM. Adding these to YOMC and JOMB we
have YBMC + XBM'C = m - XCOM + 7 - YXBOM = XBOC = 2 XA.

Simmlarly we have YCMA + JCM'A = 2B and JAMB = JAM'B =2 XC.

II. Solution by Maimouna Edy, Hull, PQ, Canada. Represent points
A, B, C, M, M' by complex numbers z,, z,, z,, z, z' respectively.
Let parentheses represent cross ratios and the bars the complex con -
jugate. We then have:

(1) (21’ zzl ZBJ z) = (211 22, zal Z')

This says that the homographic transformation which sends z,, z, z,
into 1, 0, ® respectively, that is the transformation of the given
circle into the axis of reals, sends z and z' into two conjugate complex
points.

Now equation (1) reads explicitly

z -z, 2y -2y 2 -2, 2z, -1,
Z - 2. 2, -2, o7 oo -
_ 3 1 2z 2, 2, - 2,
Evidently
[
zz-z.ZZ-Z_ZB-Zi-’_ZB"ZI




7. SOLUTIONS OF PROPOSALS 101

Therefore
arg(zz-z) arg zz-z'r -2 arg 23-2, +2 arg Z,= 24
=) () (=) Ge)
2= 2 2y -2 2,-2, 2524

This means that for oriented angles,

(angle MC, MB) + (angle M'C, M'B) = 2(angle AC, AB).

The oriented angles form an additive group isomorphic with the multi-
plicative group of the unit circle. In other words, we may take
arbitrary measures of our angles and add them (mod 27). The other two

relations are proven similarly.
Bankoff’s solution also noted the necessity for proper orientation

of the angles.
Also solved by Leon Bankoff, Los Angeles, California; J.W. Clawson,
Collegeville, Pennsylvania; and the pro pser.
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Solution to Proposal 298:
Mathematics Magazine, 31, (1957-1958), 56.

An Invariant Curve

298. [January 1957] Proposed by Huseyin Demir, Kandilli, Bolgest,
Turkey.

Let y = f(x) be a curve with the following properties

a) fl(x) = f(-x)
b) f'(x) >0 for x>0
c) flx) =0

Determine the weight per unit length w(x) at the point (x,y) such
that when the curve is suspended under gravity by any two points
on it, the curve will keep 1ts original shape.

Solution by K.L. Cappel, Philadelphia, Pennsylvania. Assume the
curve to be suspended at two arbitrary points A and B. Let the
weight between A and the y intercept of the curve be W. Then at
A, the tension in the curve can be resolved into vertical and hor-
1zontal components so that W/H = tan 6 or W = H dy/dx.

Now assume the right point of support to be moved from A to
A'. TIf the curve is to retain its shape, there must be no change
in the forces at A. This can only be the case if H is a constant. If

ds is the length of the segment AA’, and dW is its weight, then the
weight per unit length will be

dW d W d?%y/dx?
Wx :c}—-—: : - or; Wx = H » 2}’/ i
s dy 2 dy 2
1 + (%%V¢ d 1 Y
J (dx) x \] t (37

which can be satisfied by any curve obeying the given conditions.
This problem is analagous to the problem of finding the optimum
shape of a masonry arch, when the material of the arch is the only

load to be supported, and it is desired to have the thrust load act
along the neutral axis in order to eliminate bending moments.

Also solved by the proposer
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Solution to Proposal 304:
Mathematics Magazine, 31, (1957-1958), 117.

CIRCLES CONNECTED WITH TRIANGLE
304. [March 1957] Proposed by Huseyin Demir, Kandill, Bolgesi, Turkey.

Let ABC be a triangle, AB 7 AC, inscribed in a circle (0), and let
K be the point where the exterior angle bisector of A meets (0). A
variable circle with center at K meets AB, AC at E and F respectively,
such that 4 is not an interior point of KkF. Find the limiting position
m of the common point M of EF, BC as kF approaches BC.

Solution by the Proposer. Let E', F'be the points where (K) meets
AB, AC other than E,F. Let M' be the common point of BC with E'F!.

Applying the Menelaus theorem to ABC, considering EFM, E'F')' as
transversals, we have

MB FC EA _ M'B  F'C EYA
— gy — gy —— T +1 . . = +1
MC  FA  EB mM'c F'A E'B

Multiplying these equalities member to member and observing that
EA = FYA, E'A - FA we get

M8 M'B  EB.E'B
M m'c T FC.E'C

Since in the last ratio the numerator and denominator are the
powers of 5, C with respect to the circle (K), and since these powers

are equal (K is equidistant from 5 and C) ¥B:4C = M'C:M'B follows.
Hence the points ¥ and 4! are symmetric points on BC. The limiting
position m of M will also be symmetric point of m!, the limiting
position of M'. It is easy to see that m! is the foot of K4, the
exterior angle bisector of A. Hence the construction of ¥ follows
immediately.
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Solution to Proposal 349:
Mathematics Magazine, 32, (1958-1959), 223.

A Bisector

349. [September 1958] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz,
Turkey.

If ABCD, AEBK and CEFG are squares of the same orientations,
prove that B bisects DF,

Solution by Leon Bankoff, Los Angeles, California. Removing angle
CEB from the right angles AEB and CEF, we find that angles BEF, AEC,
DEB are equal. But DE = EC' = EF. Hence the triangles BDE and FBE
are congruent and FB = BD. The collinearity of F', B, D is established
by the fact that angle EBD = 90°,

D c
K
¢
A B
K L
E \\
H F

Also .solved by Norman Anning, Alhambra, California; D.A.Breault,
Sylvania Klectric Products, Inc., Waltham, Massachusetts; J.W.Clawson,
Collegeville, Pennsylvania; Norbert Jay, New York, New York; Joseph
D.E.Konhauser, Haller, Raymond and Brown, Inc., State College, Penn-
sylvania; Are Pleijel, Trollhattan, Sweden; William Sanders, Mississippi
Southern College; C.W.Trigg, Los Angeles City College, Dale Woods,
Idaho State College, and the proposer.



7. SOLUTIONS OF PROPOSALS

Solution to Proposal 334:
Mathematics Magazine, 32, (1958-1959), 106.

An Irregular Area

334. [March 1958] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Tur-
key.

Find the simplest expression for the area S enclosed by the arc AM of
a cycloid, the arc TM of the rolling circle @ (a) and the base line segment
AT.

Solution by J.W.Clawson, Collegeville, Pennsylvania. Draw MN and
CT perpendicular to AT. Let angle MCT =6 and CT =a. The area required
= area AMN 4+ area trapezoid NMCT - area sector MCT.

Now, for ¥, z = a(0-sin6), y = a(1 =cos A).

a?sin@ a?6
(2-cos ) -

(V)
Hence area = azjo (1-cos 0)2d0 +

=3/2a%0-2a2%sin0+(a?/2)sinfcos 0 +a?sin0-(a?/2)sinfcos @
—a? (f~sin 6)
- ax.

Also solved by Stanley P. Franklin, Memphis State University; Joseph
D.E.Konhauser, State College, Pennsylvania; Arne Pleijel, Trollhatian,
Sweden and the proposer.

Solution to Proposal 372:
Mathematics Magazine, 33, (1959-1960), 112.

A Trigonometric ldentity

372. [March 1959] Proposed by Huseyin Demir, Kandilli, Ervegli, Kdz, Tur-
key.
Prove the identity

. 3 .9 -
sin (6‘1+92+--.-+6n) = 8in?0 +.-- +sin®0, +

n

2 z sin@isinﬂjcos(61+26i+l+---+26]-__1+ Gj).

1<i<jg<n

Solution by the proposer. We proceed by induction. The equality holds
for n = 1 andn = 2. Let the property be true for n = p. Then setting

0=0,+0,

it will suffice to prove the equality obtained by subtraction
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P
s s 25 s 2 . . ) )
sin®(6+6,,_,) - sin®6 = sin Gp_._l—2Zsmﬁlsm0p+l.cos(6t+26£+i.+--.-+20p+6’p+1).
=1
The left hand side, 4, is seen to be equal to

A= sin6p+18in(26+6p+1)

The right hand side, B, is equal to

.2 e . : ! ;
B = sin GPH+smGPH§2sm6100s(6i+29i+1+-..-+26p+6p+1)
i=1

)

p
. 2 . .
= sin Op‘ﬂ + smﬂpﬂz[sm(28i+26£_ﬂ+...+26p+6p*1

t=1

)]

[(Sin(291+262+..;+2 6p+6p+ ) —siné

—sin(‘29i+l+---+2¢5J-p-|-t9p+1

]

Il

. 2 .
sin 6P+1+ sinf

sjinep_;l-sin(261+---+26p+6p+1) =4

p+i1 pti

]

The equality 4 = B praves that the equality holds for n = p+ 1. The result
follows by induction.
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Solution to Proposal 380:
Mathematics Magazine, 33, (1959-1960), 172.

A System of Equations
380. May 19591 Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Tur-

key.

Solve the system of equations
(1) z(z-a)+u(z+u) =0
(2) y(z-0)+uly+u) =0
(3) sly—c)+u(z+u) =0

1 1

where abc # 0 and ¢~ '+ 07 1+ =L,

Solution by Chih-yi Wang, University of Minnesota. By performing the
operations multiply (1) by v, multiply (2) by z, multiply (3) by z and ap-
plying (2), (3), (1) respectively we get

(4) zyz -aby +auy + au?+ dbuy —u® = 0
(5) zyz—bez+buz+bu?+cuz-ud =0
(6) zyz—caz+cuzr+ cu?+auzr-ud = 0

By performing the operations (4) -=(5), (5)-(6), (6) - (4) we get

(7) (au+ bu—ad)y+(be-bu—-cu)z = (b-a)u?
(8) (ca-cu—awe+(cu+ bu—-be)z = (- b)u?
(9) (au+cu=-ca)z+(adb-au-by)y = (a-c)u?

Since the augmented matrix of (7), (8), (9) is of rank 2, we can cal-
culate two variables in terms of the third, so we get

c? c(b-a)
10 s
30} y a? ab =
2 :
(11) x:é—z+-z-)-(£:—b—)—u
a2 ca

By substituting (10) into (3) we get, after simplification,

(—cz—u)2=0
a

whence by aid of (10) and (11), we obtain
z=(b/a)u, y=(/du, z=I(a/c)u.
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Note that we have used the relations abc #0, a~'+b0~'+¢™! = 4w~ ! when-
ever necessary.

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Wal-
tham, Massachusetts; Victor Ch’in, Kent State University, Kent, Ohio;
Melvin Hochster, Stuyvesant High School, New Y ork, and the proposer.

Solution to Proposal 384:
Mathematics Magazine, 33, (1959-1960), 230.
An Infinite Group

384. [September 1959] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz,
Turkey. |
Let (“ij) be a matrix of nth order the sum of the elements of whose

rows equals 1. Prove that the totality [(a; ;)] form a group of infinite order.

Solution by D. A. Breault, Sylvania Electric Products, Inc. We assume
that the proposed group operation is multiplication, and that the sum con-
dition means that

n
[1] Zaijz 1 for i=1,2, «es, 0
=1

The system has
(1) Closure : for if A = [aij]’ and B = [b,.], we have

n
k=1
whence
n n n n n
2 Cij = Z z @055 = 2 “ik(z bk;) = z as =1
j=1 =1 k=1 k=1 7=1 k=1
for each 2.

(2) Assoctativity : which can be demonstrated by the use of summations
similar to the above.

(3) Identity : The usual identity matrix / = 37;;' serves here also.

(4) Inverses: given a matrix 4, which satisfies [1], it can be shown that

A~ 1 satisfies [1] also, whenever it exists! Hence the totality of non-singu-
lar matrices satisfying [1] form a group, but not the unrestricted set.
Also solved by the proposer.
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Solution to Proposal 398:
Mathematics Magazine, 34, (1960-1961), 51.

Simultaneous Quadratics

398. [January 19601 Proposed by Huseyin Demir, Kandilli, Eregli, Kdaz.,
Turkey.

Determine the roots of the equations
2
2°+y,x+y, =0
2
Yy +z,y+x, =0

where the coefficients (real numbers) in one equation are the roots of the
other.

Solution by Harry M. Gehman, University of Buffalo.
The relations between roots and coefficients give these four equa-

tions:
T+, =Y,
Z1%9 = Yo
Yi+lYs =2,
Y1Yg = 25

From the first and third equations, 2, = y,.

Case I. If z, = y, = 0, then 2, = —y, = a, where q is arbitrary, the
equations are

2
2°—azx =0 and 2z2%+ax=0

whose roots are a, 0 and —a, 0 respectively.
Casell. If 2, =y, #0, then2, =y, =1, and 2, = y, = - 2. Both equa-
tions become

22 +2-2=0

whose roots are 1, — 2., Note that there is no need for the condition that
the coefficients be real.

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Wal-
tham, Massachusetts; Sidney Kravitz, Dover, New Jersey; A. J. Kokar,
School of Mines, Adelaide, Australia; Rostyslaw Lewyckyj, University of
Toronto; Emest E. Moyers, University of Mississippi; F. D. Parker, Uni-
versity of Alaska; Charles F. Pinzka, University of Cincinnati;, Arne Plei-
jel, Trollhattan, Sweden,; Robert E. Shafer, University of California Ra-
diation Laboratory; C'. M. Sidlo, Framingham, Massachusetts; William Squire,
Southwestern Research Institute, San Antonio, Tezas; Harvey Walden,
Rensselaer Polytechnic Institute; Chih-yi Wang, University of Minnesota,
Dale Woods, Northeastern Missouri State College; and the proposer.
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Solution to Proposal 407:
Mathematics Magazine, 34, (1960-1961), 115.

Resistance In A Cube

407 [March 19601 Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Tur-
key.

The twelve edges of a cube are made of wires of one ohm resistance
each, The cube is inserted into an electrical circuit by :

a) two adjacent vertices,

b) two opposite vertices of a face,

¢) two opposite vertices of the cube.
Which offers the least resistance?

Solution by C.W. Trigg, Los Angeles City College.

It may be inferred that the least resistance occurs in (a) since there
is a single-edge connector between the terminals. For confirmation :

In the figures, the direction of current flow is shown in each case.
Below each cube a schematic diagram is shown wherein corners at the
same potential, as determined by symmetry, are represented by the same
point. Each situation is thus reduced to the simple case of repeated ap-
plication of the laws of parallel circuits. So:

A) /R =1/r+ 1/{r/2 + 1/[2/r + 1/(#/2 + 7+ 7/2)] + ¢/2} ,
whence R = 7/12 r, where R is the resistance of the cube and r is
1 ohm.

B) £, B, H and C are at the same potential, so

R=2/{1/r+1/r+1/[r+7/2} or 3r/4.
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C) R =17/3 +7/6 + 1/3
or 57/6.

Cases (a) and (c) are sol-
ved on pages 277-279 of Mag-
netism and Electricity by E.
E. Brooks and A, W, Poyser,
Longmans, Green and Co.
(1920).

Case (c) is Quickie 32,
MATHEMATICS MAGAZINE,
March 1951, November 1959.

Also solved by Charles
F. Pinzka, University of Cin-
cinnati; and the proposer (par-
tially): One incorrect solution
was recetved.
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Solution to Proposal 415:
Mathematics Magazine, 34, (1961), 178.

A Trigonometric Sum

415. [May 1960] Proposed by Huseyin Demir, Kandilli, Ere gli, Kdz., Turkey.
Prove

n
z (;) cos (p)z sin (n —p)z = 2" 'sin na .
p=0

Solution by Josef Andersson, Vazxholm, Sweden. (Translated and para-
phrased by the editor.)
Making use of the formulas

560w () ()

the original sum can be written

n n
lz (n)sirm:r:+—1 (n)sin(n-—zp)w=2ﬂ"‘sinnm+E.
2 p 2 14 2

It remains to be proven that s = 0. Now from the substitution p = n—p" it
follows that

0

s = z (nfp’) sin (2p" =n) = -5 .

p’=n

~

Therefore s = 0.

Also solved by J. L. Brown, Ordance Research Laboratory, Pennsyl-
vania State University;, L. Carlitz, Duke University; James C. Ferguson,
Lynnwood, Washington; A.F'. Hordam, University of New England, Armidale,
NSW, Australia; Joseph D. E. Konhauser, HRB-Singer, Inc., State College,
Pennsylvania; William Squire, Southwest Research Institute, San Antonio,
Texas; Chih-Yi Wang, University of Minnesotay and the proposer.
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Comment on Proposal 415:
Mathematics Magazine, 34, (1961), 308.

Comment on Problem 415

415. [May 1960,January 1961] Proposed by Huseyin Demif, Kandilli, Eregli,
Kdz., Turkey.
Prove

n
(g)cos (p)zsin (n-plz = 2" 'sinnz .
=0

p

Comment by Louis Brand, University of Houston.

In the problem of a trigonometric sum a much simpler solution is as
follows: Call the sum S and make the index change p = n-g¢; adding the
two sums now gives

n
298 = z (;')sinn:c =2"sinnz .
p=0

Solution to Proposal 419:
Mathematics Magazine, 34, (1961), 239.

Constant Speed Curve

419. [September 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz.,
Turkey.

Determine the path in a vertical plane such that when a particle moved,
under gravity, with an initial velocity v, from a point of the path, the par-
ticle maintained a constant speed along the path. Assume no friction.

Solution by the proposer.

Let Oz, Oy be the axes of coordinates taken in the vertical plane such
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that Oy points downward and Oz to the left. Let the particle be dropped
2

from O. It reaches the velocity v, at a point 4 of Oy with y, = 04 = 1;—0.
g

Since there is no friction, the velocity along the path is the projection

of the velocity v = y2gy, and we write v, = v cos « where

vo =V20y0, v =V2gy, cos? « = 1 _ 1
(1+2g%=) (1+y'?)

and get y, = y/(1+y"%).

The variables separate and give
(Y %
Yo \/[y"yoj/yo

Zz

== 1/2\/?/_0-\/y"y0

The path is a parabola tangent to Oy at A, Oy being the tangent at
the vertex.

Solution to Proposal 425:
Mathematics Magazine, 34, (1961), 300.

Euler's Phi-function

425. [November 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz.,
Turkey.

If n~1 and n+1 are twin prime numbers, prove that 3¢(n) < n where
¢ denotes Euler’'s ¢-function.

|. Solution by Dermott A. Breault, Sylvania Electric Products, Inc.,
Waltham, Massachusetts.

If n+1 and n~1 are prime, then n is both even and a multiple of 3, so
that for some m, n = 6m, and we have:

d(n) = ¢(6) plm) = 2 p(m) ,
while
dlm) =m I (1——1);
plm P
so

3¢4n) =6¢(m) =6m M (1- 1y )
plm P

but 6m = n so,
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3pn) =n I (1-—1);
plm 7

whence
3 gb(n) i n ,

as required.

Il. Solution by L. Carlitz, Duke University.

It is evidently necessary to assume n > 4. Since n—1 and n+1 are
primes and n > 4 it follows that n is divisible by 3. Also n must be even
so that n is divisible by 6. We shall now show that if

(1) n=2"3PFn (= >1,8>1,(m,6)=1),
then

#(n) < :_r; ;
Indeed from (1)

(2) é(n) = 238 g (m) < 2%3P " - .3%_1

Remark: It is not difficult to show that
(3) o(n) = -g'
if and only if

(4) n-29P, («21,831.
We have seen above that (4) implies (3). Now if (3) holds it is clear
that 7 is divisible by 3. Put n = 3"%, where = > 1; then (3) becomes

2.3°¢((k) =n,
so that n is even. Now put

n=2u3Bm («>1, 821, (m, 6) =1).
Then if m > 1 it follows from (2) that
ob(n) < -g’ 2

This completes the proof of the equivalence of (3) and (4).

Also solved by Brother Alfred, St. Mary’s College, California; Leon
Bankoff, Los Angeles, California; Maxey Brooke, Sweeney, Texas; B. A.
Hausman, S. J., West Baden College, Indiana; Vern Hoggatt, San Jose
State College; Sidney Kravitz, Dover, New Jersey; D. L. Silverman, F ort
Meade, Maryland; Dale Woods, Northeast Missouri State T eachers College;
and the proposer.

115
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Comment on Proposal 425:
Mathematics Magazine, 34, (1961), 433.

Comment on Problem 425

425. [November 1960 and May 1961] Proposed by Huseyin Demir, Kandilli,
Eregli, Kdz., Turkey.

If n~1 and n+1 are twin prime numbers, prove that 3¢(n) < n where
¢ denotes Euler’s ¢-function.

Comment by David A. Klarner, Napa, California.

The solution given by Dermott A. Breault contains an error. In the
proof we find the statement, ‘“If n+ 1 and n~1 are prime, n is even and a
multiple of 3, so that for some m, n = 6m, and we have

#(n) = ¢(6)p(m) = 2¢(m) .**
This is only true when (6,m) = 1. In fact, the twin primes 11, 13 yield
#(12) = ¢(6) . 4(2) = 2,

but ¢(12) = 4. Therefore the method of proof given would have to be al-
tered to make it valid.

Comment on Proposal 437:
Mathematics Magazine, 34, (1961), 371.

A Well Known Problem

437. [January 1961] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz.,
Turkey.
Prove or disprove the statement: The number of odd coefficients in

the binomial expansion of (a+ b)[n] is a power of 2, the exponent of 2 be-
ing the number of 1’s appearing in the expression of n in the binary num-
ber system.

Editor's note: Joseph D. E. Konhauser, HRB-Singer, Inc., State Col-
lege, Pennsylvania, pointed out that a simpler version of this problem
appeared as Problem 7, Part II, in the Putnam Competition of 1956. The
given problem appeared as Problem E 1288 in the American Mathematical
Monthly in November 1957 with solution and references given in the May,
1958 issue.

Elementary Problem 1288, American Mathematical Monthly, 64, (1957), 671.

E 1288. Proposed by S. H. Kimball, University of Maine

The number of odd binomial coefficients in any finite binomial expansion is a
power of 2 (Putnam Mathematical Competition, this MoNTHLY [1957, p. 24]).
Prove that the power of 2 is the number of 1’s in the binary scale expression for
nin (x-+y)"
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Solution to Problem 1288:
American Mathematical Monthly, 65, (1958), 368.

0Odd Binomial Coefficients
E 1288 [1957, 671]. Proposed by S. H. Kimball, University of Maine

The number of odd binomial coefficients in any finite binomial expansion is a
power of 2 (Putnam Mathematical Competition, this MoNTHLY [1957, p. 24]).
Prove that the power of 2 is the number of 1’s in the binary scale expression
for n in (x+vy)".

I. Solution by T. R. Hatcher and J. A. Riley, Parke Mathematical Labora-
tortes, Carlisle, Mass.

Let & and » be positive integers with 2<n. We define the binary length of
n, L(n), to be the number of ones in the binary representation of 7z, and the
binary capacity of n, C(n), to be the exponent of the highest power of two which
divides #. We say “k is contained in #,” written 2Cn, if when % has a one in a
certain binary place, # also has a one in the corresponding binary place; that is,
the binary representation of % can be obtained from that of # by changing ones
to zeros.

The following properties are easily proved:

(1) C(n) is the number of terminating zeros in the binary representation of #.

(2) C(n)=0 if and only if » is odd.

(3) C(ab)=C(a)+C(b), C(a/b) =C(a)—C(d).

(4) L(n)=L(h)+L(n—"h) if and only if 2Cn.

(5) C(n)=14+L(n—1)—L(n).

(6) C(n!)=n—L(n).

(7) CG)=L(k)+L(n—h)—L(n).

The corollary of the following theorem gives the solution.

THEOREM. (3) is odd if and only if hCn.

Proof. If (3) is odd, C(3)=0 and by (7) L(n)=L(h)+L(n—h). Thus, by
(4), hCn. Conversely, if hCn, then L(n) =L(h)+L(n—h) and C(}) =0.

COROLLARY. The number of integers h such that (3) is odd is 2L,

Proof. The number of integers % with hC#n and L(k)=j is (“). Thus the
number of integers % for which (;) is odd is simply

$(50) _ g

II. Remarks by Leo Moser, University of Alberta. Problem E 1288 is a special
case of 4723 [1957, 116]. The solution of that problem is the following:
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If n=a¢tarp+ap?+ - -+ +arp®, 0=5a;<p, 1=0, 1, 2, - - -, k, then the
number of solutions of ((*), p)=1,7=0,1, - - -, n,is [[f, (a:41).

The result in E 1288 is contained in J. W. L. Glaisher, “On the residue of a
binomial coefficient with respect to a prime modulus,” Quarterly Journal of
Mathematics, vol. 30, 1899, pp. 150-156. More recently a proof was given by
J. B. Roberts, “On binomial coefficient residues,” Canadian Journal of Mathe-
matics, vol. 9, 1957, pp. 363-370.

Also solved by D. R. Brillinger, Leonard Carlitz, Joe Lipman, D. C. B. Marsh, Paul Schillo,
and the proposer.

Solution to Proposal 440:
Mathematics Magazine, 34, (1961), 427.

Circle Packing

440. [March 1961) Proposed by Huseyin Demir, Kandilli, Eregli, Kdz.,
Turkey. _

Consider a packing of circles of radius » such that each is tangent to
its six surrounding circles. Let a larger circle of radius R be drawn con-
centric with one of the small circles. If N is the number of small circles
contained in the larger circle, prove that

N = 1+6n+6z [% (/4n2=3p2 - p)]

=1

where n = [1/2(§~1)], the square brackets designating the greatest integer
function.

Solution by Alan Sutcliffe, Knottingley, Yorkshire, England.

The expression is not quite correct. For example when ’?3 =2/3+1 we
have n = 1 and hence N = 7, while the correct value is N = 13. The cor-
rect expression is

[n] [n]
N = 1+6[n]+6z [%(/4n2-3p2—p)] = 1+6 2 [Vn2-(3/5)02-21,
p=1 p=0

where n = 1/2([73~1)-

To prove this we shall first assume unit distance between adjacent
centers, and find the number of centers within a circle of radius 7. Because
of the triangular nature of the array of centers, we need consider only
one of the six similar sectors of the circle as shown in the diagram, where
the centers marked o are in the adjoining sector and the common center
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is in no sector. Clearly the number of centers contained within the sector

E L]

e = — e - - - -

1s the sum of the integral part of the lengths, such as AB, from CE to F@.
Let CB = p, which will be an integer. Then, since angle BCD = 309,

CD = (/3/2)p and BD = p/2. As AC? = AD?+CD? we have

2 _ Py2. 3.3
n —(AB+—'2) +Zp .
Hence

AB =/n?-(3/9p*-2 .

The number of centers within the sector is the sum of the integral part of
this from » = 0 to [n]. Since there are six sectors and the common center
C, we have

[n]
N = 1+6z [\,/n2—(3/4)p2—:-g] .
p=0

Now in fact the centers are not unit distance, but 2rapart. So that a radius
R = 2rn will contain N centers. Thus a radius R = 2rn+r will contain N

circles, giving n =1 (%2- 1), which completes the proof.
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Comment on Proposal 440:
Mathematics Magazine, 35, (1962), 316.

440. [March and November 1961]. Comment by Huseyin Demir, Middle East
Technical University, Akara, Turkey.

The number N given in the statement is correct. N denotes the number of
small circles contained entirely by the larger circle (tangency being included).
The number N offered by A. Sutcliffe includes also the partly contained circles
and therefore both numbers are correct.

Solution to Proposal 458:
Mathematics Magazine, 35, (1962), 126.

De Moivre's Theorem

458. [September 1961] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz.,
Turkey.

A student used DeMoivre’s theorem incorrectly as

(sin«+icos«) = Sinn«+4cos n« .

For what values of « does the equation hold for every integer n?

Solution by Dermott A. Breault, Sylvania Applied Research Labora-
tory, Waltham, Massachusetts. Let

z=cos@+isinf.

Then using DeMoivre’s Theorem correctly we have

2" = cosnf+isinnd .
The proposed relation is that (:/2)" = (¢/2™) which implies that
(1/2ME" -9 = 0.

But 2=" # 0, so there are no values of 6 for which the proposal holds for
every integer n, but it is an identity for all n of the formn = 4k+ 1.

Also solved by Brother U. Alfred, St. Mary’s College, California;
Leonard Carlitz, Duke University, Alan B. Delfino, St. Mary’s College,
California; P. D. Goodstein, University of Leicester, England; Harvey H.
Green, R. C. A. Ascension Island (partially); Richard Levitt, Boston
Latin School; David L. Silverman, Beverly Hills, California; Paul Stygar,
Yale University; W. C. Waterhouse, Harvard University, and the proposer.
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Solution to Proposal 472:
Mathematics Magazine, 35, (1962), 255.

Symmetric Conics

472 [January 1962]. Proposed by Huseyin Demir, Kandilli, Eregli, Kds.,
Turkey.

Let (C) be a conic and M be a variable point on it. Let T be the point sym-
metric to M with respect to the main axis, and ¢ the tangent line at 7. Denote
the intersection of the perpendicular from M to ¢ with the line joining T to the
center of the conic by 7. If M’ is symmetric to M with respect to I, prove that:
1. The locus of M’ is another conic (C’) of the same kind as (C). 2. The conics
(C) and (C’) are confocal.

Solution by R. D. H. Jones, College of William and Mary, Virginia. Let the
conic be x*/a*+y?/b*=1, let M be (a cos A, b sin A) so T is the point (a cos A,
—bsin A), and ¢, the tangent at T, is (x/a) cos A— (y/b) sin A=1. M is the line
through M perpendicular to ¢ and therefore is:

) —asin A
(1) v — bsin A = ——— - (x — acos A).
b cos A

The line joining 7 to the center of conic is

x y

- = (),
acosA bsin A

(2)

The point 7 is the intersection of (1) and (2) and is found to have coordinates:

a(a® + b?) —b(a® + b%) .
—— cOB 4, —— §in A,
a‘?, E= bﬂ ai‘. s bz

By hypothesis M’ is symmetric to M with respect to I and therefore has co-

ordinates:
a® + 3ab?
Xy = 281 — Xy = _;1?——62 cos A
simnilarly
—(3a% b + b%) |
Varr = 291 — Yy = T sin A
Let
a* + b? b(a® + b
PO ot s PPN s s}
aﬂ snfis 62 a? = b?

If @ and b are real and a greater than b, then 4 and B are real and 4 greater
than B. Therefore if C is an ellipse the locus of M’ is an ellipse. If, however, b is
imaginary B is imaginary: hence if C is an hyperbola, so is the locus of M’. It is
readily shown that 42— B?=a?—b?: therefore the locus of M’ is confocal with C.
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Solution to Proposal 487:
Mathematics Magazine, 36, (1963), 76.

The Square Root of a Matrix
487. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

C )

Solution by Maurice Brisebois, Université de Sherbrooke, Canada.

Find the square root of the matrix

Let X, U be arbitrary square matrices of order #», 4 a given non-singular
matrix, A a matrix similar to 4, Xj an arbitrary nonsingular matrix permutable
with 4, (A7) the set of all characteristic values of 4;i=1, - - - , n (they need
not be all distinct), E,, the identity matrix of order p; with 2., p;=n, H,; the
matrix with 1’s in the superdiagonal and 0’s elsewhere. Let (/ME1+Hp - - -,
VAEpn+H,,) be a matrix built with square matrices along the diagonal,
matrices of order p; of the type

A 1 0

¥
0 Ai
and having 0’s elsewhere.
Then all solutions of the matrix equation

Xm =4

are given by the formula:

m o— me— o B |
X = UXi(VME,, + H,y, + ** y ViEg + Hp) X4 U .

The particular case m=n=2 yields:

0 =l )
) XaU
"

If the matrix 4 is singular, a more elaborate study is needed and the exist-
ence of the mth roots of 4 is bound with the existence of a system of admissible
elementary divisors for X; a matrix such that (X,, X;) is a matrix similar to X,
(We call a system of elementary divisors for X, “admissible” if, after raising X
to the mth power, these elementary divisors split and generate the system of
elementary divisors for 4, where 4 = (4,, 4;) with 4, and 4; similar to X; and
X, respectively.)

Ax
X=UX3(‘/‘

Remarks. 1. In the general case, the solutions of X”'=A(|A| #(0) are not
expressible as polynomials in 4 unless all \; are distinct.

2. The solutions of X™=A4 are parametric in nature and the number of
parameters present in Xj is given by the number N of linearly independent
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matrices commuting with 4, where N= Y ., (2i—1)n;; (t=Sn), n; being the de-
grees of the non-constant invariant polynomials of 4.

3. For some results along this line, see Lusternik-Sobolen, “Elem. of Func-
tional Analysis,” p. 283, Dunford-Schwartz, “Linear Operations” (Part 1), prob-
lem 31 on page 583 and Bellman “Introd. to Matrix Analysis,” problems 1-3 on
page 93.

Also solved by Brother U. Alfred, St. Mary's College, California; J. A. H. Hunter, Toronto,
Canada; Francis D. Parker, University of Alaska; Gilbert Labelle, University of Montreal, Canada;
C. F. Pinzka, University of Cincinnati; J. L. Stearn, Washington, D. C.; and the proposer.

Solution to Proposal 498:
Mathematics Magazine, 36, (1963), 201.

A Property of Multiplicative Functions

498. [November 1962]| Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

If m and # are integers and 68, D are their g.c.d. and l.c.m. respectively, and
d(n) denotes the number of divisors of #, ¢(n) being the Euler function, prove

that:
(1) d(m)d(n) = d(6)d(D)
(2) d(m)dp(n) = $(8)$(D)

Solution by L. Carlitz, Duke University.
The result is a special case of the following theorem. Let f(#) be an arbitrary
factorable function, that is
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fmn) = f(m)f(n)

for all m, n such that (m, n) =1. Then
*) fm)f(n) = f(8)f(D),

where 8= (m, n) and D= [m, n], the greatest common divisor and the least
common multiple, respectively.
The proof of (*) is immediate. If

m = IIp7, n = IIp*,
then
0= Hpr” D= H",

where #'=min (7, 5), s’=max (7, 5). Since 7' +s'=r+s, we have
f®f(D) = Hpr+" = Mpr+e = f(m)f(n).

Also solved by Stephen R. Cavior, Duke University,; Daniel I. A. Cohen, Brook-
lyn, New York; George Diderick, University of Wisconsin; Murray S. Klamkin,
State Unaversity of New York at Buffalo; David A. Klarner, Humboldt State College,
California ; Gilbert Labelle, Université de Montréal; Jerry L. Pietenpol, Columbia
Unaversity; Robert Prielipp, University of Wisconsin; Sam Sesskin, Hempstead,
New York; David L. Silverman, Beverly Hills, California; Irene Williams, Con-
verse College, South Carolina; and the proposer.
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Solution to Proposal 509:
Mathematics Magazine, 36, (1963), 321.
An American Alphametic

509. [March 1963] Proposed by Huseyin Demir, Middle East Technical Univer-
sity, Ankara, Turkey.

Solve the cryptarithm
UN I TED

S T" A TE S
AMERTICA
in the base 11, introducing the digit c.

Solution by Anton Glaser, Ogontz Campus, Pennsylvania State University.
My solution was obtained as follows:

(1) A=1 [In any numeration system, adding two digits can result in
“carrying” at most unity. |

(2) D0 [Suppose D=0, then we get contradiction of S=4 =1 vs. S#A4 |

(3) S0 [Similar to (2)]

(4) E#0 [Suppose E=0, then C=A4 =1 contradicting C#4 |

(jS) T#0 [Suppose T'=0, then either I=A =1 vs. I#A4 or T=I=0 vs.
I's=l

(6) U0 and S0 by usual rules of cryptarithms
(7) E¥#a [Suppose E=a, then C=E=a vs. C#E]

@8) U+S>9
(9) U+S>a if nothing was “carried” from previous column
(10) D+S=11(c1even) = 124en = twelve D
Only the digits shown in table at right are possible for 2 o
D and S, and only in the combinations shown. 3 9
4 8
[Since 4 =1 neither D nor S can be 1] 5 7
7 5
[Neither D nor S can be 6, since either would imply 8 4
D=S=6 vs. D#S] 9 3
o 2

(11) T2, T#3, T#4, and T#5 [For T=2, T=3, T=4, and T=5 and
the seven possible values of E that go with each of these four values of 7', there
resulted in each case a contradiction of some sort. |

(12) For T'=6 and E=5, the remaining letters could be assigned a one-to-

one correspondence with the remaining digits that would satisfy the crypta-
rithm.

8a26353
961659
1754201

125
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Also solved by Josef Andersson, Vaxholm, Sweden; Merrill Barneby, Univer-
sity of North Dakota; Maxey Brooke, Sweeny, Texas; Harry M. Gehman, State
University of New York at Buffalo; Wahin Ng, San Francisco, California; Nor-
man Harelik, Mather High School, Chicago, Illinois; J. A. H. Hunter, Toronto,
Ontario, Canada; Robert Sandling, Columbia University; Anita Skelton, Watervliet
Arsenal, New York; David L. Silverman, Beverly Hills, California; Orvan Som-
mers, West Bend High School, Wisconsin; C. W. Trigg, Los Angeles City College;
Hazel S. Wilson, Jacksonville University, Florida; Brother Louis F. Zirkel,
Archbishop Molloy High School, Jamaica, New York; and the proposer.

Solution to Proposal 517:
Mathematics Magazine, 37, (1964), 56.

Parabolic Areas

517. [May 1963 ] Proposed by Huseyin Demir, Middle East Technical University,
Ankara, Turkey.

Let F and d be the focus and directrix of a parabola. If M and N are any
two points on the parabola and M’, N’ are their respective projections on d,
show that

Area FMN
Area NNM'MN

= Constant.
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I. Solution by Francis D. Parker, University of Alaska.

Using a focal length of F and orienting the directrix on the x-axis and the
focus on the y-axis, we may use y=x2/4F+F as the equation of the parabola.
If the abscissas of M and N are a and b, respectively, straightforward calcula-
tions yield

b—a

b
Area MM'N'N = f ydx = 57T [12F* + a* + ab + 3?]
and
b—a
Area FMN = —— [12F* + a? + ab + 5?].
24F

Hence, the ratio of the areas is independent of F, ¢, and b, and is equal to 1/2.

II. Solution by Joel Kugelmass, Stanford University and the National Bureau
of Standards.

It is clear that any parabola fi(x) can be transformed into another parabola
f2(x) by applying a projective transformation P, an orthogonal transformation
O and suitable rotations and translations. All of these transformations preserve
the ratio of the area of the triangular region to that of the trapezoidal region.
Hence we may transform any parabola to y =x?% If we transform again so that
lim M — N =0, the areas clearly approach the length of their altitudes which in
turn approaches p, the distance from the focus to the center. Now the function
2= (p+e)/(p+e), where the divisor and dividend are the areas of the regions,
is monotone after a sufficient number of transformations (¢;+¢€<48) and hence
approaches the limit. Now as all of the ratios are the same under the given
transformations, the original ratio equals a constant and the theorem is proved.

Also solved by Josef Andersson, Vaxholm, Sweden; Michael J. Pascual, Watervliet Arsenal, New
York; Hazel S. Wilson, Jacksonville University, Florida; and the proposer.

Dermott A. Breault, Sylvania Electric Products, Inc., Waltham, Massachuseits; P. R. Nolan,
Department of Education, Dublin, Ireland; and Brother Louis F. Zirkel, Archbishop Molloy High
School, Jamaica, New York,; each pointed out that the proposal is incorrect if the figures FMN and
N'M'MN are considered to be the rectilinear areas instead of areas bounded by the arc of the parabola,
MN.,

One incorrect solution was received.

Comment on Proposal 517:
Mathematics Magazine, 37, (1964), 517.

Comment on Problem 517

517. [May 1963 and January 1964]. Proposed by Huseyin Demir, Middle East
Technical University, Ankara, Turkey.

Comment by Josef Andersson, Vaxholm, Sweden.

This property of the areas characterizes in a way the parabola. If, in fact,
r=f(¢) is the equation of a curve K in polar coordinates, associated to ortho-
normal coordinates X'OX, Y’OY and that for each point P of K we construct
PP’ equivalent to OQ(r, 0) the point P’ traces the curve K’. Let 4; and A4,
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represent the areas between X'0OX, OP, K and K, PP’, K', X'0OX respectively.
The condition

1 dAy 1 d4,
(1) —f2 = = —
2 dp 2 d¢

dA; d(rsin ¢) 1  d(rsin ¢)
e Ui .

1
" 2 drsing) do 2 de

gives

¢
d(r sin ¢) a (COt ?)
o

¢
- = (), 2r cos? — = constant.
7 SIn ¢

cot —
2

Therefore, K is a parabola with O as focus, X'OX as axis and therefore K’ is
the directrix. The hypothesis and the ratio % is deducted immediately from (1)
if we take at first one of the points at the vertex.

Solution to Proposal 529:
Mathematics Magazine, 37, (1964), 124.

Center of Curvature

529. [September 1963] Proposed by Huseyin Demir, Middle East Technical Uni-
versity, Ankara, Turkey.

A cycloid (cardioid) rolls on a straight line without sliding. Prove that the
locus of the center of curvature of the curve at the point of tangency is a circle
(ellipse).

Solution by P. R. Nolan, Department of Education, Dublin, Ireland.
Cycloid. Taking the regular case and putting wf=a we have
% = a(a — sin a), y = a(l — cos a).
By the usual methods, the arc length from the origin is given by
(i) S« = 4a(1 — cos a/2)
and the radius of curvature by
(ii) P, = 4asina/2 -

Now if one arch of the cycloid rolls once along the y axis, the coordinates of the
center of curvature at the point of tangency will be (Pa, Ss). Therefore from (i)
and (ii), its locus is

2 4 (y — 4a)? = (40)?

which is a semicircle, negative values of x(P) not being admissible, unless we
consider the next arch to roll back along the ¥ axis to complete the locus-circle.

Cardioid. In polar coordinates

r = a(l — cos ).
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As before, this gives

(i) Sy = 4a(1 — cos 6/2)
and
(ii) Py = (4a/3) sin 0/2,

Now if the cardioid rolls once along the upper edge of the x axis, the coordinates
of the center of curvature at the point of tangency will be (S;, Ps). Therefore
from (i) and (ii), its locus is

(x — 4a)® 4 9y* = (4a)?

which is the upper kalf of an ellipse, negative values of y(P) not being admissible,
unless the same cardioid is also rolled along the lower edge of the axis.

Also solved by the proposer.

Solution to Proposal 537:
Mathematics Magazine, 37, (1964), 277.

Extreme Overlap

537. [January, 1964]. Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

Determine the relative positions of an equilateral triangle and a square in-
scribed in the same circle so that their common area shall be an extremum.

Solution by Michael Goldberg, Washington, D. C.

The extrema are the symmetric relative positions of the square and the
triangle.

The minimum overlap occurs when a side of the square is parallel to a side
of the triangle as shown in Figure 1. The protruding portions of the triangle are
marked 4 and B. For an infinitesimal rotation from this position, an increase
in one of the B areas is compensated by the corresponding decrease in the other
B, while the area 4 is reduced.

The maximum overlap occurs when a vertex of the square coincides with a
vertex of the triangle as shown in Figure 2. The equal protruding portions of
the triangle are marked C. For an infinitesimal rotation, an increase in one C
is compensated by a corresponding decrease in the other C, while a portion of
the triangle at the third vertex will now protrude.

If the radius of the circle is unity, the areas are given as follows:

A = (2 = +/2)/2
2B = +/3(v/3 — +/2)/2
2C = (9 — 54/3)/4.
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Hence,

A 4+ 2B = 0.0933, maximum protrusion, minimum overlap,

2C = 0.0849, minimum protrusion, maximum overlap.

(&

SO\ A

FiG. 1. Fia. 2.

Solution to Proposal 544:
Mathematics Magazine, 37, (1964), 354.

A Conditional Alphametic

544, [March, 1964] Proposed by Huseyin Demir, Middle East Technical Univer-
sity, Ankara, Turkey.
Solve the cryptarithm (alphametic)

ONE + TWO + SIX = NINE

in the base 10, with the following conditions:
a) ONE<TWO<SIX
b) 2| TwWOo, 6| SIX, 9] NINE where a] b means “a divides b.”

Solution by Sister Mary Joy, Notre Dame College, St. Louis, Missouri.

Since each letter represents a different digit, it can readily be seen from con-
dition (a) that 0<T <SS, S=0+42, T=0+1, and from condition (b) that TWO
and SIX are both even.

Observe that E occupies the unit’s place in the sum. Thus, O+X must be
10. Both X and O are single digits, neither can be zero, nor can the sum be
greater than 1E. From the fact that N occupies the ten’s place in the sum, it
follows that W+71=9. Also, W+110 as there is 1 ten carried from the unit’s
column.

Thus there are four possible ordered pairs for X and O: (8,2), (2,8), (6,4)
and (4,6). Now pairs of addends for W and I are chosen such that neither addend
duplicates a digit already taken. Possibilities for .S are then chosen such that
6| SIX, where S=0+2. If no duplication has occurred thus far, T is chosen so
that O+ 7T+S=NI. With still no duplication of digits, E is determined such
that 9| NINE.
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Consequently the solution is found to be

ONE 217
TWoO 392
SIX 408
NINE 1017

Also solved by Josef Andersson, Vaxholm, Sweden; Merrill Barneby, University of North Dakota;
Maxey Brooke, Sweeny, Texas; J. L. Brown, Jr., Ordnance Research Laboratory, State College,
Pennsylvania; David M. Cohen, East Midwood Day School, Brooklyn, New York; Martin J. Cohen,
Beverly Hills, California; Michael P. Cozmanoff, Lew Wallace High School, Gary, Indiana; John A.
Dossy, Illinois State University, Normal, Illinois; Joseph M. Fine, Massachusetts Institute of Tech-
nology; C. E. Franti, Berkeley, California; Philip Fung, Fenn College, Ohio; Harry M. Gehman,
SUNY at Buffalo, New York; Murray Geller, Jet Propulsion Laboratory, Pasadena, California;
Anton Glasser, Pennsylvania State University, Abington, Pennsylvania; Garold F. Gregory, Forest
Disease Research Laboratory, Delaware, Ohio; C. T. Haskell, California State Polytechnic College,
San Luis Obispo, California; Burton S. Holland, Harpur College, New York; William R. Holt,
Delaware, Ohio; J. A. H. Hunter, Toronto, Ontario, Canada; Joseph D. E. Konhauser, HRB-Singer,
Inc., State College, Pennsylvania; Janice Langan, Lew Wallace High School, Gary, Indiana; John
W. Milsom, Texas A and I, Kingsville, Texas; Wa Hin Ng, San Francisco, California; C. C. Rice,
IBM, Endicott, New York; Perry A. Scheinok, Hahnemann Medical College, Philadelphia, Pennsyl-
vania; C. W. Trigg, San Diego, California; A. M. Vaidya, Pennsylvania State University; J. S.
Vigder, Ottawa, Canada; Thomas Wojtan, Lew Wallace High School, Gary, Indiana; Dale Woods,
Northeast Missouri State TeachersCollege; Charles Ziegenfus, Madison College, Virginia; and the
proposer.

131
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Solution to Proposal 563:
Mathematics Magazine, 38, (1965), 122.
Angles in a Hexagon
563. [September, 1964] Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.
Let A, B’, A’, B be four consecutive vertices of a regular hexagon. If M is
an arbitrary point of the circumcircle (in particular on arc A’B’) and MA, MB
intersect BB’ and A 4’ in the points E and F respectively, then prove that:

(2) ¥ MEF = 3XMAF
(b) LMFE = 3XMBE.

Solution by Richard A. Jacobson, South Dakota State University.

Let AB'=x and XMAF=a. Noting that XAB'B=<XAA'B=<XAMB
=90°, we have from triangles A MB, AB'E and AA’B that A M =2x cos (30+a),
BM=2x sin (30+a), AE=x/cos(30—a) and BF=x/cos a. Thus in triangle
EMF we find that

2z sin(30 + @) —

MF  BM — BF cos(a)
tan(XMEF) = = =
ME AM — AE x
2x cos(30 + a) — -—-~—-——-—COS(30 o
2 sin(30 + a) cos(a) — 1
cos a
- 2 cos(30 + @) cos(30 — a) — 1
cos(30 — a)
2sin(30 + 24) — 1 cos(30 — a)
- cos(a) 2 cos(2a) — 1

2 sin(30 + 2a) cos(30 — a) — cos(30 — a)
- 2 cos(2a) cos(a) — cos(a)

sin(60 + a) + sin(3a) — cos(30 — a)
- cos(3a) + cos(a) — cos(a)

sin(3a)
- cos(3a)

Since a £30° we have X MEF=3XMAF. Part (b) is done similarly.

= tan(3a).

Also solved by Leon Bankoff; Los Angeles, California; J. D. E. Konhauser, HRB-Singer, State
College, Pennsylvania; Stanley Rabinowits, Far Rockaway, New York; Sidney Spital, California
State Polytechnic College; and the proposer.
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Solution to Proposal 572:
Mathematics Magazine, 38, (1965), 242.

A Memorial Cryptarithm

572. [January, 1965] Proposed by Huseyin Demir, Middle East Technical Uni-
versity, Ankara, Turkey.

To the memory of President Kennedy. Mr. J. F. Kennedy was killed on
November 22, 1963. That is, on the day 11-22-1963. Solve the cryptarithm

JF-(KEN + NEDY) = (11 + 22)-1963

in the decimal system.

Solution by Harry M. Gehman, SUNY at Buffalo, New York.

Since (11-+422)-1963 is the product of the four primes 3, 11, 13 and 151, the
only possible values of JF are 13 and 39. The latter case leads to a contradiction,
and hence J=1 and F=3. From this, it follows that KEN+NEDY =4983,
which leads to N=4, V=9, and either K=2, E=7,D=00r K=7, E=2, D=5,
Thus

(11 + 22)-1963 = 13-(274 + 4709)

= 13- (724 + 4259).

The fact that this problem has two solutions means (to a Republican) that
JFK was not unique.

Also solved by Robert H. Anglin, Danville, Virginia; Merrill Barneby, University of North
Dakota; Murray Berg, Standard Oil Company, San Francisco, California; Charles R. Berndtson,
Institute of Naval Studies, Cambridge, Massachusetts; Dermott A. Breault, Sylvania A.R.L., Waltham,
Massachusetts; Robert Brodeur, Lachine, Canada; Maxey Brooke, Sweeny, Texas; Allan Chuck, San
Francisco, California; R. J. Cormier, Northern Illinois University; Monte Dernham, San Francisco,
California; Herta T. Freitag, Roanoke, Virginia; Philip Fung, Fenn College, Ohio; Anton Glaser,
Pennsylvania State University, Ogontz Campus; Elmer E, Hunt, Jr., Boise Junior College, Boise,
Idaho; J. A. H. Hunter, Toronto, Canada; Joel V. Kamer, Cambridge, Massachusetts; John Koelzer,
University of Towa; Wahin Ng, San Francisco, California; C. C. Qursler, Southern Illinois University
(Edwardsville); Harry Panish, Pomona, California; Lawrence A. Ringenberg, Eastern Illinois Uni-
versity; Sidney Spital, California State Polytechnic College; P. K. Subramanian, Miami University,
Ohio; Charles W. Trigg, San Diego, California; William K. Viertel, State University Agricultural
and Technical College, Canton, New York; Dale Woods, Northeast Missouri State Teachers College;
Charles Ziegenfus, Madison College, Virginia; and the proposer.
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Solution to Proposal 587:
Mathematics Magazine, 39, (1966), 127.
A Trigonometric Inequality

587. [May, 1965] Proposed by Huseyin Demir, Middle East Technical University,
Ankara, Turkey.

Prove the following inequality

8 + sin 6\? 1
(——— +cos“?0<1, (= <8< + 7)s

T

Solution by Samuel Wolf, Linthicum Heights, Maryland.

(6 + sin 0)2 + cos‘i _ (3 + sin 6)2 4 (1 <+ cos 6)2 - 7
T 2 T 2

Differentiating, and setting to zero:

2 1
= (6 + sin 0)(1 4 cos @) = ) (1 4+ cos8)(sin 6)
T

4
—2(0+sin6)=sin9 [cos § = — 1]
m

4 4
—;0+sin6(—2-— 1)= 0. 6 = 0 is a solution.

m™ Y

sin 6 4 4 4

8 n'—4 98696 —4 58696

sin @
= .6815

# = + 1.46 (Jahnke and Emde, appendix p. 33)

1.46 + .99\? 1 4 .11\2
Fy = 1; F:tl.rlﬁ = (“‘“""—) + (—2—) = .92,
™

Taking the second derivative:
2 1
G = - [(1 4+ cos )2 + (6 + sin8)(—sin6)] — = [—sin28 4 (1 + cos6) cos8).
™

For #=0, G<0, so #=0 is a maximum.

For = +1.46, G>0, and 8 = +1.46 are minimums.
Thus F=£1.

(Note: The “="7 sign is necessary.)

Also solved by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan; C. B. A.
Peck, State College, Pennsylvania; Simeon Reich, Haifa, Israel; Sidney Spital, California State
Polytechnic College; K. L. Yocom, South Dakota State University; and the proposer.

Raymond E. Whitney, Lock Haven State College, Pennsylvania, pointed out the necessity of
including the equals sign along with the inequality.
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Comment on Proposal 587:
Mathematics Magazine, 39, (1966), 188.
Comment on Problem 587

587. [May, 1965, and January, 1966] Proposed by Huseyin Demir, Middle East
Technical University, Ankara, Turkey.

Prove the following inequality

(9 + sin 6

™

2 1
) —I—cos‘-—2—8<1, (—r <0< +m).

Comment by the proposer.
The given inequality is equivalent to

6 + sin 6\2 1 + cos 6\?
) +(5) <
T 2

Now consider the cycloid

x =04 sin@

y =1+ cosf
and the ellipse

x?  y?

=1,

T 4

They have common origin and equal diameters. The two curves have points
in common at the three vertices. We can prove that at the neighborhoods of
these points the cycloid lies inside the ellipse. Since their concavity is in the
same direction, the cycloid lies wholly inside the ellipse except at the three
points. The above inequality is the analytical interpretation for the property
just mentioned.
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Solution to Proposal 599:
Mathematics Magazine, 39, (1966), 134.

Linearly Dependent Vectors

599. [September, 1965]| Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

If a, b, and ¢ are any three vectors in 3-space, then show that the vectors
aX(bXc), bX(cXa), cX(aXb)
are linearly dependent.
Solution by Carl G. Wagner, Duke University.

By a well-known theorem of the vector calculus (see page 90 of Nickerson,
Steenrod, and Spencer’s Advanced Calculus for a proof based on axioms for a
vector product):

AX (BXC)=(A-C)B— (A-B)C.
Writing out the other vector products,
BX (CX A) = (B-4)C — (B:C)A = (4-B)C — (B-O)4A
CX(AXB)=(C-B)A — (C-4)B=(B-C)A — (4-C)B.

Hence,
AXBXC)+BX([CXA)+CX(AXB)=0
(This is known as the Jacobi Identity.)

Also solved by Joseph B. Bohac, St. Louis, Missouri; Dermott A, Breault, Sylvania Applied
Research Laboratory, Waltham, Massachusetts; Dewey C. Duncan, Los Angeles, California; Philip
Fung, Cleveland State University, Ohio; Mrs. A. C. Garstang, Boulder, Colorado; Carl Harris, West-
ern Electric Company, Princeton, New Jersey; Stephen Hoffman, Trinity College, Connecticut;
John E. Homer, Jr., St. Procopius College, Illinois; Murray S. Klamkin, Ford Scientific Laboratory,
Dearborn, Mich.; John Kieffer, University of Missouri at Rolla; E. S. Langford, U. S. Naval Post-
graduate School; Liesclotte Miller, Georgia Institute of Technology,; Stanley Rabinowitz, Far Rockaway,
New York; Kenneth A. Ribet, Brown University; Richard Riggs, Jersey City State College; Howard
L. Walton, Yorktown High School, Arlington, Virginia; K. L. Yocum, South Dakota State Univer-
sity; and the proposer.
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Solution to Proposal 600:
Mathematics Magazine, 39, (1966), 189.
Related Triangles

600. [November, 1965] Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

If the area of a triangle ABC is S and the areas of the in- and ex-contact
triangles are T, T, T3, T., then show that

(1) To+ To+ T.— T =28
(2) Tet4 Tt 4T = =),
Solution by the proposer.

Let I be the incenter and DEF be the in-contact triangle of A BC and let R,
r be circumradius and inradius respectively. Then

IEF/S = %r*sin (r — A)/(3bc sin A)
= r2/bc = ar?/abc = ar*/4ARS

or
IEF = ar’/4R
and similarly
IFD = br*/4R
IDE = ¢r*/4R.

Thus
T=1I1EF+ IFD+ IDE = (¢ + b + ¢)r*/4R = 2ur-r/4R = S/2R
and similarly
Ts = Sra/2R, Ty, = Sry/2R, T, = Sr./2R.
We then have
(1) To+To+T.— T =S8+ re+r)/2R — Sr/2R
=S@R+r —1r)/2R = 2§
(2) T+ T+ T - T =2R(1 /ra+ 1/ + 1 /7. — 1/7)/Si=.0.

Also solved by P. N. Bajaj, Western Reserve University; Stanley Rabinowitz, Far Rockaway,
New York; G. L. N. Rao, J. C. College, Jamshedpur, India.
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Solution to Proposal 609:
Mathematics Magazine, 39, (1966), 248.

CRYPTA-EQUIVALENCE

609. [January, 1966] Proposed by Huseyin Demir, Middle East Technical Uni-
versity, Ankara, Turkey.

Solve the following cryptarithm in the decimal system:
4-NINE = 9-FOUR
Solution by J. D. E. Konhauser, University of Minnesota.

The products 4-E and 9-R must have the same units digit. Therefore, the

only possible (E, R) combinations are (1, 6), (3, 8), (5, 0), (7, 2), and (9, 4).
Since 4 and 9 are relatively prime, 9 must divide 2N+ I+ E.

Case (1, 6): If E=1, 9 must divide 2N+I+1, leading to the following
(N, I) combinations: (4, 0), (3, 2), (7, 3), (2, 4), (5, 7), (9, 8), and (4, 9). The
corresponding values for FOUR are 1796, 1436, 3276, 1076, 2556, 4396, and
2196. The first two, the fourth, and the last must be rejected since E=1. The
third is out since N =7. The fifth is out since 5 is repeated. The sixth is out since
N=9.

Similar analysis applied to the remaining cases leads to the solutions given
below:

Case (3, 8):4-4743=9-2108.

Case (5, 0): 4-6165=9-2740.

Case (7, 2): 4-6867=9-3052.

Case (9, 4): 4-5859=9-2604.

Also solved by Monte Dernham, San Francisco, California; Samuel P. Hoyle, Jr., University of
Virginia; Sidney Kravits, Dover, New Jersey; C. C. OQursler, Southern Illinois University (Edwards-
ville); Richard Riggs, Jersey City State College, New Jersey; Jerome J. Schneider, Chicago, Illinois;
and Charles W. Trigg, San Diego, California.

Partial solutions were submitted by Merrill Barneby, Wisconsin State University (La Crosse);
Charles R. Berndtson, Massachusetts Institute of Technology; Lindley J. Burton, Lake Forest College,
Illinois; Anton Glaser, Pennsylvania State University (Ogoniz); J. A. H. Hunter, Toronto, Canada;
Beatriz Margolis, University of Maryland; John W. Milsom, Slippery Rock State College, Pennsyl-
vantia; William L. Mrosek, Wyandotte, Michigan; Sam Newman, Atlantic City, New Jersey;
C. R. J. Singleton, Petersham, Surrey, England; Lowell Van Tassel, San Diego City College; Gary B.
Weiss, New York University, School of Medicine; Donald R. Wilder, Rochester, New York; Dale
Woods, Missourt State Teachers College; and the proposer.
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Solution to Proposal 628:
Mathematics Magazine, 40, (1967), 102.

Pythagorean Alphametic
628. [September, 1966] Proposed by B. Suer and Huseyin Demir, Middle East
Technical University, Ankara, Turkey.

Solve the alphametic,
COS8* 4 SIN®* = UNO?
in the decimal system.
Solution by J. A. H. Hunter, Toronto, Ontario, Canada.

We have S?2+N?=0? (mod 10), and obviously Sszero. For each N, for
N=0,1, - -.,9, we tabulate possible .S and corresponding O values, bearing in
mind digital “square-endings.”

Since U> S, we then test each possible UNQ value to find its representations
(if any) as sum of two squares: bearing in mind the conditions which are required
for this to be possible. Where representation as sum of squares is possible, we can
then note corresponding SIN and COS from the well-known solution:

(x2 + y2)2k2 = (x2 o y2)2k2 + (zxy)2k2_

The working is somewhat tedious, but not unduly so. It is found that

uniquely we have
3912 + 1202 = 4092,

Also solved by R. H. Anglin, Danville, Virginia; Merrill Barnebey, Wisconsin State University at
LaCrosse; Sarah Brooks, Utica Free Academy, New York; Jack Dix, Rutgers University; Charles R.
Fleenor, Ball State University, Indiana; Michael Goldberg, Washington, D. C.; Jerome J. Schneider,
Chicago, Illinois; Charles W. Trigg, San Diego, California; and the proposers.
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Solution to Proposal 639:
Mathematics Magazine, 40, (1967), 166.
A Convex Quadrilateral Inequality
639. [November, 1966] Proposed by Huseyin Demir, Middle East Technical Uni-
versily, Ankara, Turkey.

Let ABCD be a convex quadrangle and P be the intersection of diagonals
AC and BD. Let the distance of P from the sides AB=a, BC=b, CD=¢, DA =d
be x, v, 2, and f respectively. Prove that

+y+z+i<ie+d+c+d).
Solution by Leon Bankoff, Los Angeles, California.

Let the bisectors of the angles between the diagonals AC and BD meet
AB, BC, CD, DA in R, S, T, U.
By a corollary of the Erdés-Mordell Theorem,
2(PS + PT) < PB+ PC+ PD
2(PT + PU) < PC + PD + P4
2(PU + PR) < PD + PA + PB
2(PR+ PS) < PA 4 PB+ PC

or 4(PR+PS+PT+PU)<3(PA+PB+PC+PD).
This inequality is stronger than the one proposed because

*+y+s+is PR+ PS+ PT + PU

and PA+PB+PC+PD<a—+b-+c—+d.

Also solved by Leon Bankoff, Los Angeles, California (second solution); Murray S. Klamkin,
Ford Scientific Laboratory, Dearborn, Michigan; C. B. A. Peck, Ordnance Research Laboratory, State
College, Pennsylvania; Stanley Rubinowitz, Far Rockaway, New York and the proposer.

Solution to Proposal 649:
Mathematics Magazine, 40, (1967), 279.

An Alphametic _
649. [March, 1967] Proposed by Huseyin Demir, Middle East Technical Univer-
sity, Ankara, Turkey.

Solve the cryptarithm THREE
+ FOUR

SEVEN
in the decimal system such that:
3 does not divide " R E E in which the digit 3 is missing;
4 does not divide F O U R in which the digit 4 is missing;
7 does not divide S E V E N in which the digit 7 is missing.
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Solution by Harry M. Gehman, SUNY at Buffalo, New York.

Let us first solve the cryptarithm, given only that
(a) the digit 3 is missing from I" H R E E;

(b) the digit 4 is missing from F O U R;

(c) the digit 7 is missing from S E V E N.

The problem has seven solutions:

(1) 16544 (2) 47266
7805 9102
24349 56368
(3) 75244 4) 79244
9102 5102
84346 84346
(5) 17544 6) 49266
6805 7102
24349 56368
(7) 24811
6708
31519

The condition (d) that 3 does not divide 7" H R E E eliminates solutions (5)
and (6). The condition (e) that 4 does not divide F O U R eliminates (7). The
condition (f) that 7 does not divide S E V E N does not eliminate any solution.

Therefore the problem as proposed has four solutions: (1)—(4).

If we ignore conditions (d) (e) (f) but retain conditions (a) (b) (c¢) with the
additional condition indicated we have unique solutions as follows:

(g) T H R E E contains the digit 8. Solution (7).

(h) SE V E N contains the digit 1. Solution (7).

(i) F O U R contains both the digits 5 and 6. Solution (5).
(3) T H R E E contains neither 6 nor 7. Solution (7).

(k) T H R E E contains both 6 and 7. Solution (2).

() T HRE E contains both 1 and 2. Solution (7).

(m) T"H R E E contains neither 5, 6 nor 7. Solution (7).
(n) T H R E E contains neither 5, 7 nor 9. Solution (7).

and so on.

The fact that solution (7) occurs so frequently in this list seems to indicate
that it has a pattern of digits essentially different from the other six solutions.
From the standpoint of numerology, this has some deep significance, I am sure.
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Solution to Proposal 680:
Mathematics Magazine, 41, (1968), 219.

A Circular Locus

680. [January, 1968] Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

Let E be an ellipse and ¢/, £’ be two variable parallel tangents to it. Consider
a circle C, tangent to ', ¢’ and to E externally. Show that the locus of the center
of Cis a circle.

Solution by the proposer.
Let the ellipse be given by the equation

1) x?/a® + y*/b* = 1
Denoting the center and radius of (C) by (a, 8) and 7, from r = (0, '), we have
(2) 2 = (a8 + b%?)/(a* + B%);
7 is also given by
3) (c— )+ (y—p)r =1

such that the normal at T'(x, v) of (E) passes through the center C.
CT is an extremal distance of C(a, B) to (E). To determine it we use the
method of Lagrange multipliers. Let

x2 y2
Fe) = (= e+ =+ (52— 1)
a b?
where A is determined by
1/2F, = x — a+ \z/a? =0,
1/2F, =y — B+ \y/6* =0

and (1). Eliminating x, v, «, 8 we obtain a quartic equation in \. So we proceed
in a different way. Supposing that the statement is true, we have

(5) 0C? = o2 4 8 = (a + b)?

Solving a, B from (4) and setting in (5) and comparing the result with (1) we get
A =ab.

We observe that if we choose A=ab, the three equations (1), (2), (3) are
consistent and this consistency gives a?-+3%=(a+b)? proving that the locus of
C(a, B) is a circle.

(4)

Also solved by Michael James Smithson, Bellevue, Washington.
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Comment on Proposal 680:
Mathematics Magazine, 42, (1969), 162.

Comment on Problem 680

680. [January and September, 1968] Proposed by Huseyin Demir, Middle East
Technical University, Ankara, Turkey.

Let E be an ellipse and ¢/, ¢’ be two variable parallel tangents to it. Consider
a circle C, tangent to ¢/, ¢’ and to E externally. Show that the locus of the center
of C is a circle.

Comment by A. W. Walker, Toronto, Canada.

Many interesting properties of an ellipse are associated with its so-called
Chasles circles of radius a +b concentric with the ellipse. If the center of the
variable circle C lies on the tnward normal, its locus is the inner Chasles circle.
The result in Problem 680 was established by Mannheim, Nouvelles Annales de
Math., 4, 3, (1903) 483, and is equivalent to the following old Japanese theorem
(Iwata, 1862):

If an ellipse touches externally two equal nonoverlapping fixed circles and their
parallel common tangents, the sum of its major and minor axes is equal to the dis-
tance between the centers of the circles.

See Tohoku Math. J., (1), 11, (1917) 65, where with rather obscure justifica-
tion, it is asserted that the theorem is untrue!

Solution to Proposal 724:
Mathematics Magazine, 42, (1969), 274.

Triangle Probability

724. [March, 1969] Proposed by Huseyin Demir, Middle East Technical Uni-
versity, Ankara, Turkey.

Find the probability that for a point P taken at random in the interior of a
triangle ABC (a=b=c), the distances of P from the sides of ABC form the
lengths of sides of a triangle.

Solution by L. Carlitz, Duke University.

Let the internal angle bisectors meet the sides BC, CA, AB in L, M, N,
respectively. Let x, y, 2z denote the distances from the point P to the sides BC,
CA, AB. The equation x =vy-3z represents a straight line, namely MN. Simi-
larly y =2+x represents NL, z=x-+y represents LM. The incenter I is in the
interior of the triangle LM N ; hence by continuity the point P must be restricted
to the interior of LM N, so that the desired probability is equal to

area LMN A,
area ABC A
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Now
ab ab
L = , CM = ,
b+ ¢ e+ c
so that
1 a®h? sin vy abA
area CLM = — = .
2 (e+c)o+¢) (e+c)b+0
By symmetry
bcA acA
area AMN = ’ area BLN = ;
&+ a)(c + a) (a + b)(c + b)
Thus
bcA
Ay = LMN = A —
T = &+ a)(c + a)
_ {1 > be(b + ¢) }
- (a+ b))+ c)(c + a)
& 2abc
T @H DG+ o)+ a)
so that
_ 2abc
S PRy Y S
Since a¢4b=2+/ab, it follows that
p=S1i

with equality only when ¢ =b=c.

Also solved by Michael Goldberg, Washington, D.C.; C. B. A. Peck, Ordnance Research Laboratory,
State College, Pennsylvania; F. G. Schmitt, Jr., Berkeley, California (partially); Paul J. Zwier, Palo
Alto, California; and the proposer.

Solution to Proposal 738:
Mathematics Magazine, 43, (1970), 109.

738. Proposed by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

There is a river with parallel and straight shores. 4 is located on one shore
and B on the other, with 4B =72 miles. A ferry boat travels the straight path
AB from A4 to B in four hours and from B to 4 in nine hours. If the boat’s speed
on still water is =13 mph, what is the velocity of the flow?



7. SOLUTIONS OF PROPOSALS

13 mph + s = 18 mph, and thus
s 2 5 mph

Returning from B to 4, the maximum possible magnitude for the vector sum
is 13 mph—s. Thus,

13 mph — s = 8 mph
s = 5 mph.

Since s= 5 mph and s<5 mph, s=5 mph.

An alternate method would be to allow the width of the river to be m miles
and find s for any m. It is possible to find 7 using this method. It involves solv-
ing the following equation:

134/5184 — m? = 44/13689 — m? + 9+/2704 — m?.

The only solution is m =0 mph. With this value of m it follows that s=3
mph.

Also solved by Richard L. Breisch, University of Colorado; Bruce A. Broemser, El Sobrante,
California; Raphael T. Coffman, Richland, Washington; George F. Corliss, Michigan State Uni-
versity; Mickey Dargilz, Ferris State College, Michigan; Gerald C. Dodds, HRB-Singer, Inc., State
College, Pennsylvania; Frank Eccles, Phillips Academy, Massachusetts; W. W. Funkenbusch,
Michigan Technological University; Michael Goldberg, Washington, D. C.; John M. Howell, Littlerock,
California; Alfred Kohler, Long Island University, New York; Lew Kowarski, Morgan State College,
Maryland; J. R. Kuttler, Johns Hopkins University; Joseph O'Rourke, St. Joseph's College,
Pennsylvania; C. D. O'Shaughnessy, University of Saskatchewan; John E. Prussing, University of
Illinois; John R. Ray, Clemson University; Simeon Reich, Israel Institute of Technology, Haifa, Israel;
Ray B. Robinson, Butler, Tennessee; Steve Rohde, Lehigh University; E. F. Schmeichel, College of
Wooster, Ohio; W. A. Schmadt, Texas A and M University; E. P. Starke, Plainfield, New Jersey;
Charles W. Trigg, San Diego, California; A. W. Walker, Toronto, Canada; Sam Zaslavsky, City
University of New York; and the proposer.
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Solution to Proposal 743:
Mathematics Magazine, 43, (1970), 169.

Tetrahedral Inequality

743. [November, 1969] Proposed by Huseyin Demir, Middle East Technical
Unaiversity, Ankara, Turkey.

Let P be an interior point of a regular tetrahedron, T'=4142434,, with p;=
PA4;, and let x;; denote the distance of P from the edge A4:4; Then prove

4

N P /BIB X s

i=1 i<j
equality holding if and only if P is at the center O of T

Solution by Michael Goldberg, Washington, D.C.

Given a base of fixed length and the sum of two other lengths, the triangle of
greatest height is obtained when the triangle is isosceles. Similarly, given the
same base, and the sum of three other lengths to form three triangles by using
the three pairs of these three sides, the sum of the heights is maximized when the
triangles are congruent isosceles triangles. This can be generalized to n tri-
angles, Hence, the sum of the distances of P from the edges of a regular tetra-
hedron divided by the sum of the distances of P from the vertices is maximized
when P is at the center of the tetrahedron.

If e is the length of the edge of the tetrahedron then the distance % between
opposite edges is given by

B2+ (e/2) + (e/2) = e, or h = e/+/2.
The distance R from the center to a vertex is given by
R? = (e/2) + (B/2)% = e2/4 + €2/8, or R = 4/3e¢/24/2.
Hence, when P is at the center, the ratio of the sums is
4R/3h = (2e7/3//2)/(3e/+/2) = 2+/3/3.

A similar extremal is obtained for each of the regular polyhedra, and for each
of the regular polygons. Of course, the ratio of the two sums depends upon the
figure considered.

Also solved by the proposer. One incorrect solution was received.
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Comment on Proposal 743:
Mathematics Magazine, 44, (1971), 44.

Comment on Problem 743

743. [November, 1969, and May, 1970] Proposed by Huseyin Demir, Middle
East Technical University, Ankara, Turkey.

Let P be an interior point of a regular tetrahedron, T'=4,4,4344, with
pi=PA; and let x;; denote the distance of P from the edge 4:4 ;. Then prove

i pi = 24/3/3 2w,
=1 i<j
equality holding if and only if P is at the center O of T.
Comment by E. F. Schmeichel, College of Wooster, Ohio.
The inequality should read
i ; 2 2—\/2 D ai.

<Jj

Apparently a +/3 was misprinted in place of the v/2 above. To show that the
inequality as printed is false consider a regular tetrahedron of edge length 1.
Let P be the midpoint of edge A14s. Then p1=p2=1/2, ps3=ps= v/3/2, %12=0,
X138 =2%14= %23 =%24=+/3/4 and x3s=+/2/2.

Thus
EP{ 1+4++4/3<28 and Ex.,r—\/3-|-~\/2/2

i<j

Since 4/6> 2.4 we have

24/3
-—?)—Exu— 2+ 46/3 > 2.8
i<J
so for the point in question
24/3
208 <—— D wip
5 3 i

By the continuity of the distances involved, this inequality will be retained for
interior points of the tetrahedron sufficiently near P.
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Solution to Proposal 756:
Mathematics Magazine, 43, (1970), 283.

Centrally Symmetric Curves
756. [March, 1970] Proposed by Huseyin Demir, Middle East Technical Uni-

versity, Ankara, Turkey.

Determine closed and centrally symmetric curves C, other than circles, such
that the product of two perpendicular radius vectors (issued from the center)
be a constant.

Solution by Harry W. Hickey, Arlington, Virginia.

Let us consider a generalized form of the problem: “Determine closed and
centrally symmetric curves C, other than circles, such that the product of two
radius vectors (issued from the center) be a constant, when the angle between the
radius vectors is v/ N, N being any positive even integer.” We will call the center
O, while the constant product is R2. Construct a circle K of center O and radius
R. Now for every point of C inside the circle, there is a point outside it, such that
the product of the distances of the two points from O is R% Hence C crosses K
at some point, say 4, and crosses again at point B, where ZAOB =x/N. Draw
an arc from A4 to B which does not pass through O, nor intersect any line through
O more than once—aside from these restrictions, the form of the arc is arbitrary.
Let the polar equation of this arc be p =f(f). The restrictions we have placed on
the form of the arc insure that the reciprocal of f is always finite, and that f is
single-valued—a multivalued f leads to ambiguities about the length of the
radius vector. So far, f is defined for values of § in a domain of length w/N. We
can extend this to other values of § by writing

16 + 7/N) = R2/f(6) for all

and the the curve C is defined! Because f is now periodic, of period 27 /N, and
since N is even, we have f(0-+x) =f(0), making C centrally symmetric (drop the
symmetry requirement, and NV can be odd).

Also solved by Michael Goldberg, Washington, D, C.; Murray S. Klamkin, Ford Scientific
Laboratory, Dearborn, Michigan; Lew Kowarski, Morgan State College, Maryland; John Oman,
Wisconsin State University, Oshkosh; E. F. Schmeichel, College of Wooster, Ohio; and the proposer.
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Solution to Proposal 763:
Mathematics Magazine, 44, (1971), 108.
Quasi Zeta Functions

763. [May, 1970] Proposed by Huseyin Demir, Middle East Technical Univer-
sity, Ankara, Turkey.

Prove:

1 ) B 1 1 1 1 1
1'|"'3—1"6'+'gl"6‘+ SR ) = 1+3—4'+§ .. ) 1——2?+3;—E+ SO B
Solution by M. G. Greening, University of New South Wales, Australia.

) =2 ne, convergent for [s| >1.

s=1

1
L3570 = 0 — 8 () = 150@)/2¢
1
1= 278438 — 44 ... = (6) —2 (5; r(é)) = (1 = 279)¢(6)

1 33
—10 —10 - i = — 2-5) — ¢(10).
L3700 57104 -+ = $(10) — 5 £(10) = (1 — 29 7 £(10)

As {(2n) =221 B,w?"/(2n)! where B, is the nth Bernoulli number, and By=
1/30, Bs=1/42, Bs=5/66, the result follows after simplification.

Also solved by Bernard August, Glassboro State College, New Jersey; Miguel Bamberger, Mon-
terey, California; Walter Blumberg, New Hyde Park, New York; Wray G. Brady, Slippery Rock
State College, Pennsylvania; Richard L. Breisch, Pennsylvania State University; Donald R, Childs,
Naval Underwater Weapons Research and Engineering Station, Rhode Island; Gerald C. Dodds,
HRB-Singer, Inc., State College, Pennsylvania; D. Dummit, San Mateo High School, California;
Louise Grinstein, New York, New York; Jeffrey Hoffstein, Bronx High School of Science, New York;
Robert F. Jackson, University of Toledo, Ohio; Shiv Kumar, Panjabi University, and Miss Nirmal,
Government Girls' High School, Panipat, India (jointly); J. R. Kuttler, Johns Hopkins Applied
Physics Laboratory, Maryland; Herbert R. Leifer, Pittsburgh, Pennsylvania; Michael J. Martino,
IBM, Poughkeepsie, New York; Kenneth Rosen, University of Michigan; L. E. Schaefer, General
Motors Institute, Flint, Michigan; E. F. Schmeichel, College of Wooster, Ohio; E. P. Starke, Plainfield
New Jersey; Paul D, Thomas, Naval Research Laboratory, Washington, D.C.; Graham C. Thompson,
Binghamton, New York; Michael R. Wise, University of Colorado; Gregory Wulczyn, Bucknell Uni-
versity; K. L. Yocom, University of Wyoming; and the proposer.
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Solution to Proposal 775:
Mathematics Magazine, 44, (1971), 230.

Inverse Functions

775. [November, 1970] Proposed by Huseyin Demir, Middle East Technical
Unaversity, Ankara, Turkey.

1 1
Prove f J1 — xP dx =f /1T —x%dx, where p,q > 0.
0 0

I. Solution by J. C. Binz, Bern, Switzerland.

Let more generally f be a decreasing continuous function in [, b]. Then the
inverse function g exists in [f(b), f(e) ] and is also decreasing and continuous.
Compute

f(a) a a b
L "(t)dt = "(t)dt = —b f(f)dt.
S ey = [ elrolrom = [ you = a@ - o + [ o

®)

b b
Hence, if additionally we have f(a) =b, f(b) =a, thenf g(t)dt = f f(#)dt.

The functions f:x—+/1—x% and g:x—~/1 —x? represent in [0, 1] a special case
of the preceding situation, which proves the proposition.

II. Solution by Vaclav Koneiny, Jarvis Christian College, Hawkins, Texas.

1 1 1
f V1 —ardx = ;-f giHr(1 — g)ledy
0

0

1 1
=— B(1/p,1+ 1/g9) = — B(1/p,1/9)
P 99

where p, ¢>0 to get the real value. We used the substitution x?=3z. B is the beta
function and as B(x, y) =B(y, x) the value of the integral is unchanged if we
interchange p and g.

Also solved by Joseph Beer and Bernard August (jointly), Glassboro State College, New Jersey;
Walter Blumberg, Flushing High School, New York; Dermott A. Breault, Cyber, Inc., Cambridge,
Massachusetts; Robert X. Brennan, Dover, New Jersey; Robert J. Bridgman, Mansfield State College,
Pennsylvania; David C. Brooks, Sealtle Pacific College, Washington; G. R. Desai, St. Louts University;
Robert Desko, Davenport, Iowa; Ellis Detwiler, Adams, New York; Santo M. Diano, Havertown,
Pennsylvania; Fred Dodd, University of South Alabama; M. G. Greening, University of New South
Wales, Australia; Robert G, Griswold, University of Hawait, Hilo College; Philip Haverstick, Fort
Belvoir, Virginia; Harry W. Hickey, Arlington, Virginia; John E. Homer, Lisle, Illinois; N. J.
Kuenzi, Oshkosh, Wisconsin; David E. Mannes, SUNY, Oneonta, New York; Stephen B. Maurer,
Phillips Exeter Academy; Edward Moylan, Ford Motor Company, Dearborn, Michigan; Albert J.
Patsche, Rock Island Arsenal, Illinois; V. V. Ramana Rao, Andhra University, South India; B. E.
Rhoades, Indiana University; Steve M. Rohde, General Motors Research Laboratories, Warren, Mich-
igan; E. F. Schmeichel, College of Wooster, Ohio; Harry Siller, Hofstra University; A. Swyanavayana-
muti, Andhra University, Waltair, South India; R. A. Struble, North Carolina State University;
Philip Tracy, APO San Francisco; C. S. Venkataraman, Sree Kerala Varma College, Trichur, South
India; John R. Ventura, Jr., Naval Underwater Systems Center, Newport, Rhode Island; R. L.
Woodriff, Menlo College, Menlo Park, California; Thomas Wray, Department of Energy, Mines and
Resources, Ottawa, Canada; Robert L. Young, Cape Cod Community College, Massachusetts; Paul
Zwier, Calvin College, Michigan; and the proposer.
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Comment on Proposal 775:
Mathematics Magazine, 45, (1972), 293.

Comment on Problem 775

775. [November, 1970, and September, 1971] Proposed by Huseyin Demir,
Middle East Technical University, Ankara, Turkey.

1 1
Prove J Y1 — xpdx = f Y1 — xadx, where p,q > 0.
0 0

Comment by Ralph Leung, Berkeley, California.

The problem would become immediate if we rewrite the above equality as

1 N 1 -
f T =%rax = j P =yaay.
0 0

Both sides give the area of the region bounded by the x-axis, the y-axis, and the
graph of x” + y* = 1 in the first quadrant — the Lh.s. by integrating with respect
to x, the r.h.s. with respect to y.

Solution to Proposal 806:
Mathematics Magazine, 45, (1972), 171.

Symmetry About a Line

806. [September, 1971] Proposed by Huseyin Demir, Middle East Technical

University, Ankara, Turkey.

Let H be the orthocenter of an isosceles triangle ABC, and let AH, BH, and CH
intersect the opposite sides in D, E, and F, respectively. Prove that the incenters of
the right triangles HBD, HDC, HCE, HEA, HAF, and HFB lie on a conic.

Solution by Vladimir F. lvanoff, San Carlos, California.

The problem is a special case of the following theorem:

If six points are symmetric about a line, they lie on a conic.

It can be easily proved by the converse of Pascal’s theorem, or else by analytical
method.
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Incidentally, the theorem holds true, if six points are symmetric about a point.
By choosing the point of symmetry as the origin, the six points have coordinates
as follows:

(xlsyl)s (xZ’yz): (x33y3)5
(_ X1, — yl)s(_ X2, — y2)3(_ X3, — y3a)s
and the equation of the conic is

x2 y2 xy 1

x3 yi X111 1

= 0,
x% y§ X2)Y2 1
X3 Vi Xsy; 1

Also solved by Leon Bankoff, Los Angeles, California (three solutions); Ragnar Dybvik, Tingvoll,
Norway; Michael Goldberg, Washington, D. C.; M. G. Greening, University of New South Wales,
Australia; and the proposer.,

Solution to Proposal 839:
Mathematics Magazine, 46, (1973), 169.

Probability of No Change

839. [September, 1972] Proposed by Huseyin Demir, Middle East Technical
University, Ankara, Turkey.

Given three boxes each containing w white balls and r red balls identical in shape.
Take a ball from the first box and put it in the second box, then take a ball from the
second box and put it in the third, and finally take a ball from the third box and
put it in the first. Find the probability that the boxes have their original contents
as to color.

Solution by Thomas Spencer, Trenton State College, New Jersey.

A moment’s reflection will show that the only events which will leave the color
composition of all three boxes unchanged are the choices white, white, white or red,
red, red. Their probabilities by the multiplication rule are:

w w+1 ) w1 )_ w(w + 1)?
(w+r)(w+r+1 (w+r+1 T wHPDWHr+1)?

(w :- r )(w:--lr--}- 1)(wr++p-1 1) T (w r)r((;ﬂ-): 1)?

respectively. These events are disjoint and thus the required probability is their sum:

and
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wlw + 1)% + r(r + 1)?
w+rw+r+1)2°

Note: In the case of N boxes the solution would be:

ww+ DY+ e+ DV
(w+r(w+r+1)N1

Also solved by Gladwin Bartel, La Junta, Colorado; Melvin Billick, Midland High School, Michigan;
J. L, Brown, Jr., Pennsylvania State University; Joseph B. Browne, Oklahoma State University; Daniel
L. Calloway, Ashville, North Carolina; Abraham L. Epstein, Hanscom Field, Massachusetts; George
Fabian, Park Forest, Illinois; Michael Goldberg, Washington, D. C,; Kathleen Harris, New Hampton,
Iowa; Karl Heuer, Moorhead, Minnesota; John M. Howell, Littlerock, California; Vaclav Konecny,
Jarvis Christian College, Texas; Lew Kowarski, Morgan State College, Maryland; Michael W. O’ Don-
nell, Carnegie-Mellon University; George Pfeiffer, Old Dominion University, Virginia; Louisa Russo,
Michigan Technological University; R. Shantaram, University of Michigan-Flint; and the proposer.
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Solution to Proposal 859:
Mathematics Magazine, 47, (1974), 49.

A Non-Unique Cryptarithm

859. [March, 1973] Proposed by B. Suer and H. Demir, Middle East Technical
University, Ankara, Turkey.
Solve the cryptarithm THREE + NINE = EIGHT + FOUR.

I. Solution by Harry L. Nelson, Livermore, California.

There are 12 solutions in decimal base. They are:

THREE + NINE = EIGHT + FOUR

30122+ 4542 = 25703 + 8961
29433 4+ 7073 = 30692 + 5814
40233 + 5653 = 36104 + 9782
59766 + 4346 = 63295 + 0817
70566  + 2926 = 69107 + 4385
69877 + 5457 = 74096 + 1238

In each of these one can interchange the values of G and O to obtain another
solution yielding 12 in all.

If one were to add the condition that “THREE is a prime’’ only the pair 69877
+ 5457 = 74096 + 1238 = 74296 + 1038 would qualify; and if in addition we ask
that “FOUR not be divisible by 3’ the solution would be unique (base 10).

II. Solution by John Tabor and John Beidler (jointly), University of Scranton,
Pennsylvania.

Solutions to additive cryptarithms are now trivia with the TABOR-AUTOMATIC
CRYPTARITHM SOLVER. This program will accept any cryptarithm involving
several additions and one equal sign and solve it in any base.

The program was written as a term project in a course on DATA STRUCTURES.
The cryptarithm

THREE + NINE = FOUR + EIGHT

proved uninteresting in that it has 10 solutions. The replacements to obtain these
solutions are:

E

=

NN 0w W W W NN

QAN E RN WL g
00 00 h thh N RN B B = —

mt.nt\.)mu-t.n-q--..l-h-hz
VOO oOoOOoOoOW0VwWY oo I
W W oo oo =m=aaon O
ARV O WL 4y
NOwmea9—~woa Y3 Q
O = WrEk, 9N Y O
— = h DO W00 My
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Total CPU time was 20 seconds on an XDS Sigma 5. The program is in
FORTRAN.

Also solved by Merrill Barnebey, University of Wisconsin at La Crosse; Harold Biller, Brooklyn, New
York,; Dorothy Brunet, Sherman Oaks, California; Robert Copus, Rose Hulman Institute of Technol-
ogy; H. Marlon Hewit, Reedley High School, California; J. A. H. Hunter, Toronto, Canada; Janice
A. McGoldrick, Cranston High School, Rhode Island; Sam Newman, Atlantic City, New Jersey,
Erwin Schmidt, Washington, D. C.; S. O. Shachter, Philadelphia, Pennsylvania; Mary F. Turner, Glen
Allen, Virginia; C. S. Venkataraman, Trichur, India; and the proposers.

Solution to Proposal 916:
Mathematics Magazine, 48, (1975), 296.

Trilinear Coordinates

916. [November, 1974) Proposed by H. Demir, M.E.T.U., Ankara, Turkey.

Let XYZ be the pedal triangle of a point P with regard to the triangle ABC.
Then find the trilinear coordinates x, y, z of P such that

YA+ AZ=Z7ZB+ BX = XC + CY.

Solution by M. S. Klamkin, University of Waterloo.

By drawing segments from P parallel to AB and AC respectively and
terminating on BC, it follows that

BX =xcot B+ zcsc B, CX =xcotC+ ycscC.

The other distances CY, AY, AZ, BZ follow by cyclic interchange. From the
hypothesis,

(y+2z)cotA +cscA)=(z+x)(cotB +cscB)=(x+ y)(cot C +csc C)=?

where s = semiperimeter. Solving:

x =-§(tan}'§+tan —Zq—tan ?)
_S A ¢ . B
y—3(tan2+tan2 tan 2),

and

_S A B_ .G
2—3(tan2+tan2 tang:).

Also solved by D. M. Bailey, Gordon Bennett, Alfred Brousseau, Michael Goldberg, J. M. Stark,

and the proposer.
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Solution to Proposal 963:
Mathematics Magazine, 50, (1977), 53.

Convex Quadrilaterals January 1976

963. Characterize convex quadrilaterals with sides a, b, ¢, and d such that

a b ¢ d

d a b ¢

c d a b =0
b ¢ d a

[Hiiseyin Demir, Ankara, Turkey.]

Solution: It is easy to show, by adding and subtracting rows and columns, that the given
determinant equation is equivalent to

(a+c+b+d)a+c—b—d)[(a—c)+(b-d)]=0.
Since we have a, b, ¢, and d all positive, then either
at+c=b+d or a=c¢ and b=d

In the first case the quadrilateral can be circumscribed about a circle: in the second it is a
parallelogram. The argument reverses to show that, if the quadrilateral either is a parallelogram or

possesses an inscribed circle, then the determinant is zero.
Crayron W. DopGE

University of Maine at Orono
Also solved by Gerald Bergum, M. G. Greening (Australia), Daniel Mark Rosenblum, J. M. Stark, and the

proposer.

Solution to Proposal 998:
Mathematics Magazine, 51, (1978), 199.

A 120° Triangle November 1976

998. Characterize all triangles in which the triangle whose vertices are the feet of the internal angle
bisectors is a right triangle. [ Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.]

Solution: Let A’,B’,C’ be the feet of the angle bisectors of angles 4, B, C, respectively. Then angle
A’C’B’ is a right angle iff angle ACB is 120 degrees.
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Let a,b,c (a',b,c") be the lengths of sides opposite 4,B,C (A’,B’,C’), respectively. Using the law
of cosines and the fact that the angle bisector divides the opposite side in the ratio of the adjacent
sides it follows that:

(C’)2=(a‘f0 )2+(b‘-l£c )2_2( a‘fc)(b‘fc)(az-'-i!tjb_ Cz)

67=(55e) +(a55) ~255e) ot (T )
2 2 ; -

(a’)2=(al'):c‘) +(al-)|fb) _z(a!-):c )( aﬁ-cb)(b +ZC;c ﬂz)

Angle A'C’B’ is a right angle iff (a’)’>+ (') —(c’)*=0. But this equation simplifies (after much
algebra) to

2abc*(a*+ b*— c*+ ab) i
(a+b)*(a+c)(b+c)

Thus angle A’C’ B’ is a right angle iff >+ b>— ¢2+ ab=0. But the law of cosines yields a>+ b*—c?+
ab=0 iff angle ACB is 120°.

Joun OMAN
University of Wisconsin-Oshkosh

Also solved by Gordon Bennett, Howard Eves, Michael Goldberg, Leonard D. Goldstone, M. G. Greening
(Australia), Hubert J. Ludwig, J. M. Stark, Pambuccian Victor (Romania), Robert L. Young, and the proposer.

Solution to Proposal 1197:
Mathematics Magazine, 58, (1985), 240.

Collinear Mid-Altitudes September 1984

1197. Characterize the triangles of which the midpoints of the altitudes are collinear. [ Hiiseyin
Demir, Middle East Technical University, Ankara, Turkey.]

Solution 1. The midpoints of the altitudes of a triangle are collinear if and only if the triangle is
right-angled.
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Proof. We note first that the altitudes of a triangle all lie inside the triangle if it is acute-angled,
while if it has an obtuse angle, two of the altitudes lie outside the triangle.

Let P, O, and R be the midpoints of the altitudes from the vertices 4, B, and C, respectively,
of triangle ABC. If D, E, and F are the midpoints of the sides BC, CA, and AB, then P, Q, and
R lie, respectively, on EF, FD, and DE, produced if necessary. By Pasch’s axiom applied to the
triangle DEF, the points P, Q, and R are collinear if and only if two of them coincide with two
of D, E,F, in other words lie on the sides of triangle ABC. This occurs if and only if triangle
ABC is right-angled.

J. H. WEBB
University of Cape Town
South Africa

Solution 1I: The altitudes of a triangle are concurrent at the orthocentre. This is the only
property of the altitudes that we need make use of; the answer to the problem is just a special case
of the following more general result.

Let D, E, F be points on the side-lines (i.e., lines containing the sides) BC,CA, AB, respectively,
of the triangle ABC, such that AD, BE,CF are concurrent at a point P. Then the midpoints of
AD, BE, CF are collinear if and only if P coincides with a vertex of triangle ABC or lies on one of its
side-lines.

Proof. 1f P coincides with a vertex, suppose P = A without loss of generality. Then £ = F= 4,
and D lies anywhere on the side-line BC; the midpoints of AD, BE, CF are collinear on a line
parallel to BC.

If P is not a vertex, we use oblique coordinate axes 4B and AC, with suitable units of
measurement along the axes so that 4, B, C have coordinates (0,0), (2,0), (0,2), respectively. Let
P have coordinates (p,q). Then the coordinates of D, E, F are 2p/(p+q), 2q/(p + q)),
0,2¢q/2—-p)), 2p/(2—q),0); we require p + g+ 0,2 — p # 0, 2 — g # 0, since otherwise at least
one of D, E, F is undefined (for instance, AP is parallel to BC if p + ¢ =0). The coordinates of
the three midpoints are (p/(p+q), q¢/(p +q)), (1,q4/(2—p)),(p/(2— g),1); these midpoints
are collinear if and only if

p/(p+q) q/(p+q) 1 2pq(2—p - q)
P/(21~q) ‘?/(21—p) ) =(P+Q)(2"p)(2‘tﬂ=0'

This occurs if and only if p=0o0r g=0o0r p+ g=2,i.e,if and only if P lies on a side-line of the
triangle (in which case two of the midpoints coincide).

Now the orthocentre of a triangle cannot lie on a side-line of the triangle unless it coincides
with a vertex, i.e., unless the triangle is right-angled. Hence the midpoints of the altitudes are
collinear if and only if the triangle is right-angled.

[am—

J. F. RIGBY
University College
Cardiff, Wales

Also solved as in solution I by Jordi Dou (Spain), Howard Eves, Syrous Marivani, Mike Molloy (student,
Canada), Richard Parris, Cem Tezer (Turkey), and Michael Woltermann; as in the generalized solution Il ( but using
the theorems of Ceva and Menelaus) by Cem Tezer (Turkey, second solution); using analytic geometry by S. F.
Barger, Kenneth Bernstein, Ragnar Dybvik ( Norway), Cornelius Groenewoud, Boulkhodra Hacene, L. Kuipers
(Switzerland), Hubert J. Ludwig, Bill Olk (student), John Oman, Harry Sedinger. Robert S. Stacy ( West Germany'),
John §. Sumner, Michael Vowe (Switzerland), Jihad Yamout (student), and Robert L. Young: using barycentric or
similar coordinate systems by O. Bottema (The Netherlunds), J. T. Groenman (The Netherlands, two solutions), J. C.
Linders (The Netherlands), and the proposer; using conjugate complex coordinates hy Howard Eves (second solution)
and Stephanie Sloyan; and using vector analysis by Leonard D. Goldstone and Harry D. Ruderman.
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Solution to Proposal 1206:
Mathematics Magazine, 59, (1986), 46.

Sum of Inradii of a Dissected Triangle January 1985
1206. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.

Let ABC be a triangle with sides a, b, and ¢ and semiperimeter s. Let the side BC be
subdivided using the points B= P, P,,..., P,_,, P, = C in order. If r, is the inradius of triangle

A
B=F, aj_, Py a; P; P,=C
FIGURE 1
AP, P, for i=1,...,n, prove that
1 s
n+ - +n<zhlns—s,

where &, is the length of the altitude from vertex A.

Solution by Vania D. Mascioni, student, ETH Ziirich, Switzerland.
For i=1,2,...,n let a, be the base P,_, P, and s, the semiperimeter of triangle AP, _, P,, and
let a] and s/ be the corresponding quantities for triangle A BP,. We show below that

Si_1—aj_y $;—a; Si—a ;
. = for2<i<n. 1
S/_y S; s/ - (1)

An easy induction yields

From the arithmetic-geometric mean inequality and the fact that r;s, = $a,h, we obtain

n n n

s—a\l/n 1 s'—ar._]_ a;\ 2
(5%) " sa X5 _E‘g(l—?)_l"nh“;’“

A o i i =1
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so that

nha §s—a 1/n
= 2 (1 i ( 5 ) ),
which is stronger than the proposed inequality, which follows if we use 1 —1/x <ln x for x> 1
with x:=(s/(s — a))/".

Proof of (1). To simplify notation, the sides of triangles ABP, _, and AP, , P, are relabeled as
shown in FIGURE 2. Then (1) becomes

B P., P;

FIGURE 2. Stewart’s theorem.

Nto=p prtWw—g wTw=p—4g
utv+p v+w+qg ut+tw+p+gq’

and an easy (though boring) algebraic manipulation shows this is equivalent to
(P +p*=u?)g+ (0> +¢*—w?)p=0.
Now by the law of cosines, this is equivalent to
2pqu(cos £AP,_ B+ cos£ZAP,_\P,) =0,
which is obvious, since ZAP,_ B+ ZAP,_|P,==. Cf. also Stewart’s theorem, in Coxeter and
Greitzer, Geometry Revisited, p. 6.
Also solved by Jordi Dou (Spain), Vaclav Konecnj & Ronald Shepler, L. Kuipers (Switzerland), Syrous Marivani,
William A. Newcomb, Bjorn Poonen (student), J. M. Stark, Paul J. Zwier, and the proposer.
Most solvers used an estimate like
H m L h x; — .r h d
IEEDIWTD) ) of e fad
ST R xR ) () 2R P

where 4 =(0,h,), B=(z,0), C=(z+a,0), P/=(x},0), [P,..., P,] is a strict refinement of the partition
[Pys...s Py) of BC (i.e., each P, isa P/, and m > n), and r/ is the inradius of triangle AP/ _, P/
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Solution to Proposal 1211:
Mathematics Magazine, 59, (1986), 113.

Isoptic of an Ellipse March 1985

1211. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.
Find the locus of points under which an ellipse is seen under a constant angle.

Solution by Volkhard Schindler, Berlin, East Germany.

We consider the ellipse x?/a® + y*/b* =1 in a rectangular (x, y) coordinate system. It is well
known that the tangent to the ellipse at the point (x,, y;) has equation x,x/a’+ y,y/b*=1.
Since the tangent has x-intercept a’/x, and y-intercept b?/y,, the slope m of the tangent from a
point (x, y) outside the ellipse is given by

s y i bz/)’]
x—a’/x, X ’
so that
ﬂ _ hma y1 b
a mx-—y s Y y—mx’ (1)

Since (x;, y;) lies on the ellipse, we have [ma/(mx — y)]* +[b/(y — mx)]* =1, which after
simplification becomes

(x*=a?>)m*>—2xym+ (y*—b*) =0. (2)

If « is the constant angle subtended by the ellipse, then we can number the roots m;, m, of (2)
so that tana = (m, — m,) /(1 + m;m,). Hence

(m; — m2)2 _ (ml + mz)z —4mym,

(A +mmy) (L+mym,)?

tan’a =

?

which remains valid if « is replaced by 180° — a. Since m; + m, =2xy/(x*— a*) and m;m, =
(y* = b*)/(x* — a*), we obtain

(3)

In particular, if a = 180°, then (3) reduces to the equation of the original ellipse, as it should. If
a = 90°, then (3) reduces to x> + y? = a? + b?, which is the equation of a circle of radius Va? + b?.

Since equation (3) is not convenient for plotting, we introduce polar coordinates (x = rcos 8,
y = rsinf). Then (3) becomes r* — 24r? + B =0, where

A = a*+ b* + 2( b*cos?d + a*sin’f ) cot’a,
B=(a*+b*)* + 4ab*cot’a,
from which we obtain
r’=A+VA*-B. (4)

Since for fixed 6, r’ decreases as « increases, we see that the plus sign in (4) is used when
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0° <a £90° and the minus sign when 90° < a <180°. As seen from the figures, the loci are
near-ellipses when 90° < a < 180°, and are nearly ovals of Cassini or lemniscates of Booth when
0° < a < 90°. Of course, if a = b, all loci are circles.

a/b=2_ a/b=4.

In each figure the values of a for the five curves, starting

from the outermost, are 30°, 60°, 90°, 120°, and 180°.

Also solved by Michael V. Finn, J. T. Groenman (The Netherlands), L. Kuipers (Switzerland), Vania Mascioni
(student, Switzerland), William A. Newcomb, Richard Parris, Stephanie Sloyan, and Robert L. Young. Solved
partially by Zachary Franco (student) and the proposer. '

M. S. Klamkin (Canada) found the result in R. C. Yates, 4 Handbook on Curves and their Properties, J. W.
Edwards, Ann Arbor, 1947 (reprinted as Curves and their Properties, NCTM, 1974), pp. 138-140, where the terms
isoptic and orthoptic are defined. None of the solvers considered the exceptional cases arising when, for example, x,
X|. V. ¥, or m is zero or m is infinite in (1).
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Solution to Proposal 1298:
Mathematics Magazine, 62, (1989), 200.

Circumscribable quadrangle June 1988
1298. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

A quadrilateral ABCD is circumscribed about a circle, and P,Q, R, S are the
points of tangency of sides AB, BC,CD, DA respectively. Let a =|AB|, b=|BC|,
¢ =|CD|, d =|DA|, and p =|QS|, g = |PR|. Show that

ac bd

PR
I. Solution by J. M. Stark, Lamar University, Texas.

Denote by r the radius of the circle tangent to the sides of ABCD, and let a, 8, v, 8
be the angles subtended at the center of the circle by the chords SP, PQ, QOR, RS
respectively.

We have a=|AP|+|PB|, b=|BQ|+|QC|, ¢c=|CR|+ |RD|, d=|DS|+ |SA| and
right triangle geometry gives |AP|=|SA|=rtan(a/2), |BQ|=|PB|=rtan(f8/2),
|CR|=|QC|=rtan(y/2), |RD| = |DS| = r tan(§ /2). It follows that

ac = r*(tan(a/2) + tan(8/2))(tan(y/2) + tan(8,/2)),
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and (1)
bd = r¥(tan( B,/2) + tan(y,/2))(tan(8/2) + tan(a/2)).
Application of the identity tan(x) + tan(y) = (sin(x + y))/(cos(x )cos(y)) to (1)
gives
ac _sin((a+B)/2)sin((y +8)/2) @
bd  sin((B+7v)/2)sin((a+8)/2)"
From a+ 8+ v+ 8 =27 we obtain sin((y + §)/2) = sin((a« + 8)/2) and
sin((a + 8)/2) = sin((B + v)/2), which, when combined with (2) yields
ac _ sin*((a+B)/2) 3)
bd  si*((B+7)/2)
Since p? = (2rsin((a + 8)/2))* and g% = (2rsin((B + §)/2))?, it follows from (3) that
ac/bd = p%/q*
II. Solution by O. Nouhaud, Faculté des Sciences de Limoges, France.

Let A’, B’,C’, D’ be the inverses of A, B, C, D respectively under the inversion
about the inscribed circle with center O and radius r. We know that

W2 |ABI
|AB|=r1 |OA[|OB|

(e.g., see A Survey of Geometry, Howard Eves, Allyn and Bacon, Boston, 1963,
Theorem 3.4.20, p. 153). A circular permutation gives three similar relations. More-
over, 2| A’B’| = |SQ| because A’ bisects SP and B’ bisects PQ. Similarly, 2|C'D’| = |SQ|
and 2|A’D’| = 2|B’C’| = |RP|. The desired result follows from these relations.

Also solved by Mangho Ahuja, Wadie A. Bassali (Kuwait), J-M. Becker (France), Bilkent University
Problem Solving Group (Turkey), J. C. Binz (Switzerland), Duane M. Broline, Brown University
Fly-Fishing Club, Onn Chan (student), Gang Chang (student), Chico Problem Group, Timothy Chow,
Ragnar Dybvik (Norway), E. C. Friedman, Francis M. Henderson, ]J. Heuver (Canada), Geoffrey A.
Kandall, Hans Kappus (Switzerland), Viclav Konecny, L. Kuipers (Switzerland), Helen M. Marston,
Richard E. Pfiefer, James S. Robertson, Harry D. Ruderman, Raul A. Simon (Chile), Ldszlo Sziics, R. S.
Tiberio, George Vakanas (student), and the proposer.
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Solution to Proposal 1305:
Mathematics Magazine, 62, (1989), 278.

Inradii Identity October 1988

1305. Proposed by H. Demir and C. Tezer, Middle East Technical University,
Ankara, Turkey.

Let Py=B, P, P,,..., P,= C be points, taken in that order, on the side BC of the
triangle ABC. If r, r, and h denote, respectively, the inradii of the triangles ABC,
AP;_,P,, and the common altitude, prove that

- 5)-1- 7

i=1

Solution by Jim Francis, University of Washington, Seattle, Washington.
It suffices to prove the case where n =2, since the formula then follows by
induction.
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From Euclidean geometry, we know that the inradius of any triangle is the quotient
of its area by its semiperimeter. Hence, if we let x, = BP, x,=P,C,a,=AB,a, =
AP, and a, = AC, then

o sx;h _ x,h
3(x,+a,+ay) *mta ta,
B xoh
2=y, ta,+ay’
and
- (x, +x5)h

x,+x,ta,tay’
This implies that
1 _2& 1 % ~[1- 2x,h - 2x,h
( ~h )( ~h )_ h(x,+a,+a,) h(xy+ay+ay)

(a,+a3—x)(ag+az;—x,)
(a,+ay+x)(ag+az+x,)°

Similarly we have

1 ﬁ _a,taz—x, —x,
h) a+az+x,+x,°

It remains to show that the right-hand sides of the above two equations are equal, or
equivalently, to show that

(a,+ay+x)(ag+az+x,)(a; +az—x, —x,)
=(a;+a,—x,)(ay+a;—x;)(a; +az+x;+x,).

Expanding and eliminating that which is common to each side, the right side reduces
to

—a% Ay T X1 )Xy —azTtas; T X)Xy,
( gk 2) +( 8.4 8.4 2)

while the left side reduces to the additive inverse of this expression. Thus it remains to
show that the above expression is zero. This follows from the law of cosines as follows.
Let a = ZAP,B. Then

—al+a3+x}=2a,x,cos
while
—aj+aj+ x5 =2ayx, cos(m — a) = — 2a,x, cos a,

and the proof is complete.

Also solved by S. Belbas, Francisco Bellot-Rosado (Spain), Anna Boettcher and Viclav Konecny,
Duane M. Broline, Michael V. Finn, John F. Goehl, Jr., Francis M. Henderson, J. Heuver (Canada),
Hans Kappus (Switzerland), L. Kuipers (Switzerland), Lamar University Problem Solving Group, J. C.
Linders (The Netherlands), Vania Mascioni (Switzerland), The Oxford Running Club, Werner Raffke
(West Germany), John P. Robertson, Hyman Rosen, Volkhard Schindler ( East Germany), Michael Vowe
(Switzerland), A. Zulauf (New Zealand), and the proposer.
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Solution to Proposal 1327:
Mathematics Magazine, 63, (1990), 275.

Diagonals of Exscribed Quadrangles October 1989

1327. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let the sides PQ, QR, RS, SP of a convex quadrangle PQRS touch an inscribed
circle at A, B,C, D and let the midpoints of the sides AB, BC,CD, DA be E, F,G, H.
Show that the angle between the diagonals PR, QS is equal to the angle between the
bimedians EG, FH.

I. Solution by Jordi Dou, Barcelona, Spain.

Let the inscribed circle have radius r and center O. Let J,K,L,M be the
intersection points of the circle with the lines OHP, OEQ, OFR, OGS respectively.

Let N=JLNKM, T=PRNQS, I =EGNFH. Note that JL and KM are perpen-
dicular [because the arcs JAK and LCM together comprise half the perimeter of the
circle], so [since A JOL is isosceles] KM is parallel to the angle bisector of £ JOL.
Also, note that the lines PR, HF are antiparallel with respect to the sides of £ JOL
[that is, ZOHF = £ORP and £ OFH = £ OPR], because OH-OP = OF -OR =r?,
and so A OHF, A ORP are similar, [since OH/OF = OR/OP]. This [together with
the fact that A JOL is isosceles] implies that the lines PR, HF form equal angles (say
a) with JL. Similarly, the lines QS, EG form equal angles (say 8) with KM. We then
have £ GIF = 90° — (a + B) while £ RTS = 90° + (a + B), and we are done.

S
b
A
\
\
\
M
\\ C
‘G
\
D \
\10
J\H _-F I“?L"“ F
/ i
P : 5
T/, T~
/ T~
A E SR
=\ R
Q B

II. Solution by Jiro Fukuta, Motosu-gun, Gifu-ken, Japan.

Let O be the center of the inscribed circle of the quadrangle PQRS and r be the
length of the radius. Let P,Q,R,S be denoted by the complex numbers «, 8,7, 8,
respectively, on the complex plane with the origin at O. Then E, F, G, H correspond
to r2/B,r%/y,r2/8,r?/a, respectively.

To obtain the conclusion, it is sufficient to prove that

_(e—vy)\. rz/_g—rz/g
F‘(B—S] ' (rz/c_t—r2/'?]

is real. We have
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r’y —rla
p_a—y @
B—4é r2§-r2ﬁ
Bé

_a-y a-y Bs

B-6 B-56 ay
#Ia—vlz(_ﬁ__E]
|ﬁ_8|2 o ¥ »

But (6 /a)B/vy) is real, because arg(d/a)+ arg(B/y) = arg POS + arg ROQ = .
This completes the proof.

Also solved by Duane M. Broline, Timothy V. Craine, John F. Goehl, Jr., Francis M. Henderson, Paul
Martin, and the proposer.

Solution to Proposal 1356:
Mathematics Magazine, 64, (1991), 278.

Collinearity and symmetry October 1990

1356. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let P, Q be points taken on the side BC of a triangle ABC, in the order B, P,Q,C.
Let the circumcircles of PAB, QAC intersect at M(# A) and those of PAC, QAB at N.
Show that A, M, N are collinear if and only if P and Q are symmetric in the midpoint
A’ of BC.

Solution by Christos Athanasiadis, student, Massachusetts Institute of Technology,
Cambridge, Massachusetts.

Let K and L be the points of intersection of the line BC with the lines AM and
AN respectively. Suppose that the line BC is the x-axis of a coordinate system with
origin B, and let a, p, g, k, and [ denote the x-coordinates of C, P, Q, K, and L
respectively. The point K is on the radical axis of the circumcircles of PAB and QAC,
hence its powers k(k —p) and (k — g)Xk — a) with respect to these two circles are
equal. It follows that k =aq/(a + g —p). Similarly we have l=ap/(a+p —q),
interchanging the roles of p and g. We easily find that [ =k ifand only if p+¢g=a
and the result follows.

Also solved by Ratil Marin Carrera (student, Mexico), Jordi Dou (Spain), Jiro Fukuta (Jepan), Viclav
Konecnij, Alvaro Avila Mdrquez (student, Mexico), Richard E. Pfiefer, loan Sadoveanu, Jyotirmoy Sarkar
(student), Seshadri Sivakumar (Canada), John S. Sumner, and the proposer.

Phiefer obtained the solution by inverting the figure through a circle with center A.
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Solution to Proposal 1371:
Mathematics Magazine, 65, (1992), 133.

A Triangle Invariant April 1991

1371. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let A, B, and C be vertices of a triangle and let D, E, and F be points on the
sides of BC, AC, and AB, respectively. Let U, X,V,Y,W,Z be the midpoints of,
respectively, BD, DC, CE, EA, AF, FB. Prove that

Area( A UVW) + Area( A XYZ) — ; Area( A DEF)

is a constant independent of D, E, and F.

I. Solution by Jordi Dou, Barcelona, Spain; submitted on the occasion of his 80th
birthday.

First, let D’ be any point between C and D and take U’, X’ to be the midpoints of
BD', D'C. Then XX'=UU’' = ;DD'.

B U v' D D’ X X’ C

Let hy,hy hy,... denote the distances from F,A,W,... to BC respectively.
Clearly h, = zh;, and hy, = 5(hy + h,), and therefore by addition, h, + hy, —h =
shy=hy+hy—h, We let [PQR] denote the area of triangle PQR, and set
S =[ABC], ¢ =[DEF], o= [(XYZ], g, = [UVW], ¢’ =[D'EF], o= [X'YZ], and
oy, =[U'VW]

Using these identities, we find that

o' —o=3DD'(h,—h;),
oy =0y = %XX'(hr —hz) = %DD’(’W —hy)

and

oy —0,=3DD'(hy—hy,).
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It follows that
(o ¥ 05— 30")—(oy +0,— 350)=3iDD'(hy—hy;+hy—hy—hg+hg)
= %DD'((hr +hy—hg) = (hz+hy— hF))
= iDDF(%ha_ %ha)
=0.

By symmetry, it is clear that the preceding is also 0 when D’ is between B and D.
In exactly the same way, taking F’ on AB instead of F and triangle D'EF’ for
D'EF, and after this, taking E' on AC instead of E and triangle D'E'F’ for D'EF’,
we find that o, + 0, — ;0 is invariant with respect to DEF.
We obtain the value of o, +0,— 30 by putting E=A, F=B, D=C. Then
X=C,Y=A, Z=B, U is the midpoint of BC, V is the midpoint of CA, W is the
midpoint of AB. Also, 0 =S, o, =S, o, =(1/4)S, and therefore, o, + 0, — 30 = 3.

I1. Solution by Ldszlé Sziics, Fort Lewis College, Durango, Colorado.
We shall use the notation [ABC] = Area( A ABC). The given expression can be
written as

([ABC] - ([AWV] + [BUW] + [CVU]))
+([ABC] - ([AZY] + [ BXZ] + [CYX]))
—(1/2)([ABC] - ([AFE] + [BDF] + [CED]))

Using the relations [AFE]= 4{AWY], [BDF]=4[BUZ], and [CED] = 4[CVX], the
expression becomes

3[ABC] — ([AWV ] —[AWY] + [AZY] - [AWY]
+[BUW] - [BUZ] + [ BXZ] — [ BUZ]
+[cvu] - [cvX]+[CYX] - [CVX]).

We now use the relation [AWV] — [AWY ] = [VYW ] = {[CAF] and its five analogues
to obtain

3[ABC] — 1([CAF] + [ EAB] + [ABD] + [ FBC] + [ BCE] + [ DCA]),
which is easily seen to equal

3[ABC] - 3[ABC] = 3[ ABC].

Also solved by Larry E. Askins, Eynshteyn Averbukh, Seung-Jin Bang (Korea), Karen Benbury,
Francisco Bellot Rosado (Spain), Scott D. Cohen (student), C. Patrick Collier, Miquel Amengual Covas
(Spain), Jordi Dou (Spain), Ragnar Dybvik (Norway), Kao H. and Irene C. Sze, Milton P. Eisner, Jiro
Fukuta ( Japan), Thomas E. Gantner, John F. Goehl, Jr, Cornelius Groenewoud, H. Guggenheimer, Francis
M. Henderson, Ralph P. Grimaldi, Russell Jay Hendel, Paul Irwin, Geoffrey A. Kandall, Vaélav Koneényj,
Philip Lau, Eugene Lee, Peter W. Lindstrom, James Pfaendiner, Richard E. Pfiefer, Rolf Rosenkranz
(Germany), loan Sadoveanu, Jyotirmoy Sarkar, Volkhard Schindler (Germany), Mohammad Parvez Shaikh
(student ), Ching-Kuang Shene, John S. Sumner, Jordan Tabov (Bulgaria), Michael Vowe, and the proposer.

Tabov proved the more general result. Consider a triangle A|A;A;, a real number a different from 0
and 1, and real numbers A and . For arbitrary points X,, X,, and X, respectively on the lines A;Aj,
AjA,, and A A,, define points C;, (i, j=1,2,3; i #j) by m-ﬂaﬁx’,-@-ﬁm} where O is any point
outside the plane of the triangle A;A,A; and B=1-a. Let F(X), X, X3) =A[CyCy,Cp] +
ulC14C5,Ca] = [ X, X, X,], where the square brackets denote signed area, and X,, X,, and X, describe
independently respectively the lines A;A;, A;A, and A A;. Then the function F(X,, X,, X;) is constant
if and only if A = u = (1 —a) ™2 (The given problem corresponds to the case a =1/2.)
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Solution to Proposal 1377:
Mathematics Magazine, 65, (1992), 199.

A triangle invariant June 1991

1377. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Let DEF be a variable triangle inscribed in triangle ABC, and let U, X,V,Y,W, Z
be the midpoints of the line segments BD, DC, CE, EA, AF, and FB, respectively.
Show that the expression '

|[UVW| + |XYZ| — 3| DEF|
for areas is constant.

Solution by Hans Kappus, Mathematisches Institut der Universitit, Basel, Switzerland.
Denote the expression in question by S. We show that S = (3/4) Area ABC.
Since S/Area ABC remains unchanged under affine transformations we may

choose the affine coordinate system so that A =(0,0), B=(1,0), and C =(0,1). Now

let

D=(1-r,r), E=(0,s), F=(t,0); O0<r,s,t, <1l.
Then we have
U=(1-r/2,r/2), V=(0,(1+s)/2), W=(t/2,0),
X=((1-7r)/2,(1+r)/2), Y=(0,s/2), Z=((1+¢)/2,0).

Using these coordinates the following areas may be calculated in a straightforward
manner:

Area UVW = 5(2 —r+2s —t —rs + 1t — st)
Area XYZ = z(l+r+t—rs+rt—st)
Area DEF = (s —rs + rt — st).

From this it follows that S =3/8 =(3/4) Area ABC.

Also solved by Beno Arbel (Israel), H. Guggenheimer, Francis M. Henderson, John G. Heuver
(Canada), Thomas Jager, Viclav Kone¢ny, Helen M. Marston, Ralph Merrill, José Heber Nieto (Venezuela),
Chrysostom G. Petalas (Greece), F. C. Rembis, Robert L. Young, Paul J. Zwier, an unsigned solution, and
the proposer.

Several people mentioned that the problem is incorrect as stated. The intention in the problem was that
D, E, F should be on line segments BC, CA, and AB respectively. A corrected version of this problem
appears as 1371 in April 1991, and several solutions are given in the April 1992 issue. Somehow the
uncorrected version did not get lifted from the file of accepted proposals, so it inadvertently reappeared.
Apologies.
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Solution to Proposal 1405:
Mathematics Magazine, 66, (1993), 269.

Isogonally related circles October 1992

1405. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara,
Turkey.

Two circles inscribed in distinct angles of a triangle are isogonally related if the
tangents from the third vertex not coinciding with the sides are symmetric with
respect to the bisector of the third angle. Given three circles inscribed in distinct
angles of a triangle, prove that if any two of the three pairs of circles are isogonally
related then so is the third pair.

Solution by the proposer.

Let T',,T,,T’; be circles inscribed in angles BAC, CBA, ACB, respectively, of the
given triangle ABC. Let I, r; be the center and the radius of I}, i=1,2,3. Let E
and F denote the points on side AB, E, F & {A, B}, such that CE and CF are tangent
to I, and T,, respectively. Let y= ZACE and pu = £ FCB. As usual, let a,b,c
denote the lengths of the sides BC, CA, AB, respectively.
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By considering triangles AI,C and I, BC, respectively, we have
A Y
b= (cot 5 +cot 5)1’1
B [
G= (cot 3 + cot E)Q.

Now I’} and T, are isogonally related if, and only if, ¥ = u, and, using the previous
equations, this is the case if and only if

or equivalently,

where 2s =a + b + ¢ and r is the inradius of triangle ABC. This can be regrouped
into the form

a _ b (1)
(U/r-1/r)  (r-1/r)"
Similarly, T’y and T'; are isogonally related if, and only if,
b c

(/ra—1/0)  (/ra—1/7)" (2)

Combining (1) and (2), we obtain

a C

(/ri=1/r) ~ (1/rs=1/r)"
which happens if, and only if, I, and I'; are isogonally related.

Also solved by Richard Holzsager, Jiro Fukuta (Japan), and Francisco Bellot Rosado and Maria
Ascension Lépes (Spain).
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8 |Quickies for Mathematics Magazine|

List of Quicky problems composed by Hiiseyin Demir
[1] Quicky 117, Mathematics Magazine, 28, (1954-1955), 37.

[2] Quicky 138, Mathematics Magazine, 28, (1954-1955), 241.
[3] Quicky 141, Mathematics Magazine, 28, (1954-1955), 292.
[4] Quicky 166, Mathematics Magazine, 29, (1955-1956), 29.
[5] Quicky 188, Mathematics Magazine, 30, (1956-1957), 172.
[6] Quicky 227, Mathematics Magazine, 32, (1958-1959), 32.
[7] Quicky 234, Mathematics Magazine, 32, (1958-1959), 113.
[8] Quicky 242, Mathematics Magazine, 32, (1958-1959), 229.
[9] Quicky 266, Mathematics Magazine, 33, (1959-1960), 302.
[10] Quicky 281, Mathematics Magazine, 34, (1961), 303.

[11] Quicky 284, Mathematics Magazine, 34, (1961), 303.

[12] Quicky 341, Mathematics Magazine, 37, (1964), 251.

[13] Quicky 343, Mathematics Magazine, 37, (1964), 251.

[14] Quicky 710, Mathematics Magazine, 59, (1986), 112.

Quicky 117, Mathematics Magazine, 28, (1954-1955), 37.

Q@ 117 tow many squares are there on a chessboard? [Submitted by Huse-
yin Demir ] :

Quicky 138, Mathematics Magazine, 28, (1954-1955), 241.

@ 138. Find the sum S, = 1.1! + 2.2! + ... + nent [Submitted by
Huseyin Demir] .

175
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Quicky 141, Mathematics Magazine, 28, (1954-1955), 292.

Q 141. If the twelve months of the year are written in the order
offered by 5n + 2 (mod 12), n =1, 2, 3, ... 12, what can be said
about the characteristics of the first seven, the next four, and of
the last month? [Submitted by Huseyin Demir.]

Quicky 166, Mathematics Magazine, 29, (1955-1956), 29.

Q 166. Can the sum of the cubes of the first m consecutive 1ntegers

Quicky 188, Mathematics Magazine, 30, (1956-1957), 172.

Q 188. At what times must the hands of a clock be interchanged 1in
order to obtain new correct time? [Submitted by Huseyin Demir].

Quicky 227, Mathematics Magazine, 32, (1958-1959), 32.
Q227. Find a function f(n) such that f(1), f(2), F(3), .- f(13), f(14) be

Quicky 234, Mathematics Magazine, 32, (1958-1959), 113.
Q 234. If the sum of the coefficients of A(z) B(2) is zero, the sum of the
coefficients of one of the polynomials is necessarily zero. [Submitted by
Huseyin Demir]

Quicky 242, Mathematics Magazine, 32, (1958-1959), 229.

Q242. Find an f(n) such that fleven) = % and flodd) = 1 [Submitted by
Huseyin Demir)

Quicky 266, Mathematics Magazine, 33, (1959-1960), 302.

Q266. If p is a prime number greater than 3, then p®+2 is composite. [Sub-
mitted by Huseyin Demir]
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Quicky 281, Mathematics Magazine, 34, (1961), 303.

Q281. Evaluate the radius of the inner tritangent circle to excircles of a
triangle [Submitted by Huseyin D emirl.

Quicky 284, Mathematics Magazine, 34, (1961), 303.

Q284. What is the locus of points whose projections on the sides of a tri-
angle are collinear? [Submitted by Huseyin Demirl.

Quicky 341, Mathematics Magazine, 37, (1964), 251.
Q341. Find the limit of the fraction as » approaches infinity:

(1) + ¢(2) + ¢(3) + - - - + ¢(n)
{+ 358 <t

where ¢(n) is Euler’s totient.

[Submitted by Huseyin Demir. ]

Quicky 343, Mathematics Magazine, 37, (1964), 251.
Q343. Identify the angle 6 satisfying
sin(1-0 4+ 15°)  sin(2-6 4 15°)  sin(3-0 + 15°)
Vi vz Vi
[Submitted by Huseyin Demir. ]

Quicky 710, Mathematics Magazine, 59, (1986), 112.

Q710. Submitted by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey.
If n is any positive integer, show that the number T=(1/8)n(n+1)(n+2)(n+3) is a
triangular number.






9 [Solutions of Quickies|

Solution to Quicky 117:
Mathematics Magazine, 28, (1954-1955), 37.

. 8+ 6+ 17
A 117. Not 64, but 12 + 22 4 +.. + 82 4+ — : = 204.

Solution to Quicky 138:
Mathematics Magazine, 28, (1954-1955), 241.

A 138. i i
S =3 ppl= 3 (p+1-1)p!
p=1 p=1
n n
=3 (p+1! =2 p!
= p=
=(h+D!-1

Solution to Quicky 141:
Mathematics Magazine, 28, (1954-1955), 292.

A 141. The first seven months listed will have 31 days, the next four
months will have 30 days and the last one has 29 or 28 days.

Solution to Quicky 166:
Mathematics Magazine, 29, (1955-1956), 29.

Aage. It 12+23+ ..+ =(n+ 12+ ... +(n+n)d
then 2013+ 224+ ... +md) =134+ 22 4+ ... ¢ (mn+n)?
or 20m(n +1)]2 0Cim + n)(m +n +1)]°7
so mlm + 1) V2 = %m +n)(m + n + 1)

But this last ecuation 1s 1mpossiole. Therefore tiie answer 1s no.

I

Solution to Quicky 188:
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Mathematics Magazine, 30, (1956-1957), 172.

A 188. Let p denote the number of hours and a the fraction of an hour
at the time T. When the hands are interchanged we obtain new time

t', the corresponding numbers being p', @’ (We may suppose p'2 p).
At t the angle in hours p' +a' of minute hand is 12 times a:

p' & " =12; 0 < p' < 12, a'<L,

F+a=12a, 02p< 12 a <1,
We have

a

(12p' + p)/143
a' (p' + 12p)/143 .

Hence, given any two positive integers p, p' less than 12 we get a and

'

a', and therefore the required times.

Solution to Quicky 227:
Mathematics Magazine, 32, (1958-1959), 32.

A227. f(n) = 1-¢ (n)

Solution to Quicky 234:
Mathematics Magazine, 32, (1958-1959), 113.

A234. For z = 1 we havezai . Ebi - Eci and the result follows.

Solution to Quicky 242:
Mathematics Magazine, 32, (1958-1959), 229.

A 242. Construct f(n) so that f(n) =1 (n+1-2[n/2]) where [n/2] is the largest
integer inn/2.

Solution to Quicky 266:
Mathematics Magazine, 33, (1959-1960), 302.

A266. If p is a prime exceeding 3 then we have p?+2 = (6m+1)*+2 =0
(mod 3).

Solution to Quicky 281:
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Mathematics Magazine, 34, (1961), 303.

A281. This circle, being the nine-point circle of the triangle, has radius % R.

181

Solution to Quicky 284:
Mathematics Magazine, 34, (1961), 303.

A 284. If the points are restricted to lie on the plane of the triangle, the
locus is the circumcircle of the triangle., Since no such restriction is made,
the locus is the right cylinder having this circumcircle as section.

Solution to Quicky 341:
Mathematics Magazine, 37, (1964), 251.

A341. ¢(k) denotes the number of integers smaller than k2 and prime to it.
Hence,

Z:: o (%)

is the total number of relatively prime pairs among the first # integers, the total
number of pairs being (3). The limit of the given fraction being

v /()

it will be the probability that any two integers taken at random be relatively
prime. This probability is known to have the value 6/72 Hence, the limit of the
given fraction is 6/m2

Solution to Quicky 343:
Mathematics Magazine, 37, (1964), 251.

A343. The angle 8 is evidently 15°,

Solution to Quicky 710:
Mathematics Magazine, 59, (1986), 112.

A710. T is a triangular number if for some positive integer k, one has (1/8) n(n+ 1) (n + 2)
(n+3)=(1/2) k(k+1). By considering parity and noting that n(n+3)<(n+1) (n+ 2),
one is led to try k =n(n + 3)/2. Then

k_'_1=;11(1f12+3)_|_1== (n+1)2(n+2),

and the result follows.






10 |Contributed Solutions to Mathematics Magazine|

List of solutions sent to Proposals by Hiiseyin Demir
[1] Proposal 192, Mathematics Magazine, 28, (1954-1955), 36.

[2] Proposal 203, Mathematics Magazine, 28, (1954-1955), 163.
[3] Proposal 204, Mathematics Magazine, 28, (1954-1955), 165.
[4] Proposal 221, Mathematics Magazine, 28, (1954-1955), 291.
[5] Proposal 226, Mathematics Magazine, 29, (1955-1956), 488.
[6] Proposal 270, Mathematics Magazine, 30, (1956-1957), 108.
[7] Proposal 272, Mathematics Magazine, 30, (1956-1957), 166.
[8] Proposal 332, Mathematics Magazine, 32, (1958-1959), 52.
[9] Proposal 353, Mathematics Magazine, 32, (1958-1959), 226.
[10] Proposal 374, Mathematics Magazine, 33, (1959-1960), 113.
[11] Proposal 383, Mathematics Magazine, 33, (1959-1960), 228.
[12] Proposal 387, Mathematics Magazine, 33, (1959-1960), 233.
[13] Proposal 400, Mathematics Magazine, 34, (1960-1961), 53.
[14] Proposal 401, Mathematics Magazine, 34, (1960-1961), 55.
[15] Proposal 646, Mathematics Magazine, 40, (1967), 226.

[16] Proposal 653, Mathematics Magazine, 42, (1969), 283.

[17] Proposal 1199, Mathematics Magazine, 58, (1985), 243.

[18] Proposal 1256, Mathematics Magazine, 61, (1988), 54.

Contributed Solution to Proposal 192:
Mathematics Magazine, 28, (1954'1955)’,36'

192. [January 1954] Proposed by V. Thebault, Tennie, Sarthe, France.

If A', B', C' are the symmetries of the vertices of a triangle ABC
with respect to a fixed point, the circumcircles of the three triangles
AB'C', BC'A’, CA'B' have a point in common which lies on the circum-

circle of the triangle A4BC.

Solution by Huseyin Demir, Zonguldak, Turkey. It will suflice to prove
that any two of the circumcircles intersect on the circumcircle (0) of
ABC. Let I be the intersection of the circles BC'A’ and CA'B’'. To prove
that it belongs to (0) we show that ZBIC= /BAC = ZA: /BIC = /BIA' +
(A'IC =/BC'A' + LA'B'C =/B'CA + /KB'C = /B'CK + /KB'C = /A'KC = ZBAC =

/A.

The first equality follows from the fact that the points B,I,C',A’ on
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one hand and B,B',C,A' on the other lie on the respective circumcircles,
and the other equalities from the parallelisms:

Bc' || cB',A'c’' || Ac,A'B' || 4B.

Also solved by H. E. Fettis, Dayton, Ohio; O. J. Ramler, Catholic
University of America and the proposer.

Contributed Solution to Proposal 203:
Mathematics Magazine, 28, (1954-1955), 163.

263. [May 1954] Proposed by Norman Anning, Alhambra, California.

Prove that three of the intersections of x% — y2 + ax + by = 0

and 2 + y2 - a? - b? = 0 trisect the circle through these three
points.

2

II. Solution by Huseyin Demir, Zonguldak, Turkey. Set r? = aq
b2 and let the value of y obtained by adding together the two
equations be substituted in the first equation. We get an equation:

4 x* + da x3 - 3r2x2 - 2ar%x + a%r2 =0

?
of fourth degree in x of which the roots are x,, x,, X3, Xy.

If the triangle A1A2A3 corresponding to x;, %;, %3 is equilateral,
Xyt xy toxg will vanish (for A1A2A3 is in the circle x2 + y2 -ri=
0 centeredat 0), and %), 1s from the second coefficient (x1 tx, t x3)
toxy = oxy T oCa.

fherefore to prove the statement it will suffice to show that
the above equation is divisible by # + a and that in the quotient
obtained the term 2 is missing.

By division we get

Ax™ + dax® - 3r2x? - 2ar’x + a%r? = (x + a)(4x? - 3rx + ar?) ,
]

and this 1s in agreement with what we said above. Hence A1A2A3 1s
an equllateral triangle.
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Contributed Solution to Proposal 204:
Mathematics Magazine, 28, (1954-1955), 165.

204. [May 1954] Proposed by C. W. Trigg, Los Angeles City College.

In the triangle ABC let the feet of the median (m_ ), of the
internal angle bisector (ta), of the cevian (p,) to the contact
point of the incircle with a, and of the cevian (qa) to the contact

point of the excircle relative to A with a be respectively A , 4, Ap

and Aq. Use similar notation for the corresponding lines to b
and c.

1). Determine the relationship between the sides of the triangle
if the following triads are to be concurrent: p , my, t, at S;

P, Qp, m, at R; m Py, t, at T; 9,, Py, m, at V.

a’ c c.
2). Show that Aqu and Aqu are parallel to 4B; Cth and SV
are parallel to BC; and CtAp and RT are parallel to AC.

Solution by Huseyin Demir, Zonguldak, Turkey. 1). We determine

the positions of the cevians u,, v,, w, or their feet 4,, B, , C,

on the respective sides BC, CA, AB by the ratios:
k(A,) = AB/AC, k(B) =BC/BA, k(C,) = C,A/CB

Since these points are interior points of the sides all these
ratios are negative. Their values are tabulated below:

k(A,) = -1, k(A,) = -c/b, k(A,) = -(s-b)/(s-c), k(4}) = ~(s-c)/(s-b)
k(B)) = -1, k(B ) = -a/c, k(B)) = -(s-c)/(s-a), k(B ) = -(s-a)/(s-c)
k(C) = -1, k(C,) = -b/a, k(C;) =}-(s-a)/(s-b), k(C,) = -(s-b)/(s-a)

Now, the required common condition is obtained by applying Ceva’s
theorem to the triples of cevians:



186

10. CONTRIBUTED SOLUTIONS TO MATHEMATICS MAGAZINE

TRIPLES: POINTS: CEVA THEOREM: CONDITIONS:
b mpy, t, S [-(s=b)/(s-c)][-1][-b/al=-1 (s-b)/(s-c)=a/b

c

Py po M R [-(s-b)/(s-c)][-(s-a)/(s-c)]) [-1]1=-1 (s-a)(s-b)=(s-c)?

[

py t, T [-11[-(s-c)/(s-a)]l[-b/al=-1 (s-c)/(s-a)=a/b
q, Py, m V. [-(s-¢)/(s-b)][-(s-c)/(s-a)] [-1]=-1 (s-c)?=(s-a)(s-b)

c

These four conditions just obtained are easily seento be identical
with the unique condition

c = (a® + b%)/(a*+b) .
2) (a): To prove Aqu//Aqu//AB we see that k(Ap) = 1/k(Bq),
k(Aq) = l/k(bp).
(b): To prove Cth//BC we similarly see k(Bp) = l/k(Ct)

(see cond (3)).
Now to prove SV//BC we apply the Menelaus theorem to the triangles
BCBm, BCCm cut respectively by the lines ASAP, AVAq:

(A,B/AC)(AC/AB, ) (SB,/SB)

1, then SB/SBM Zk(Ap) .

(AqB/AqC)(VC/VCm)(ACm/AB) 1, then VC/VC 2/k(Aq).

Hence

SB/SB, = 2k(A4,) = 2/k(A,) = VC/VC, .

This proves that S, V divide BB,, CC_ in the same ratio. But
having BmCm//BC the property follows.
(¢): To prove CtAp//AC we see that k(Ct) = l/k(Ap).

Then finally to show RT//AC we again apply the Menelaus theorem
to the triangles CAC , CAA  cut by the lines BRBq, BTBq respectively,

k(B,) (BA/BC,)(RC,/RC) = 1 then RC/RC, = 2(B,) ,

2/k(8,),

k(Bp) (TA/TAm)(BAm/BC) 1 then TA/TAm

and

RC/RC, = 2k(B ) = 2/k(B,) = TA/TA_ .

Hence R and T divide cc, AAm in the same ratio. But having CﬁAm//CA
we also have RT//CA. 0. F. D.
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Also solved by Sister M. Stephanie, Georgian Court College, N. J.
and the proposer.
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Contributed Solution to Proposal 221:
Mathematics Magazine, 28, (1954-1955), 291.

221. [November 1954] Proposed by E.P.Starke, Rutgers University.

On a conical surface there is traced a spiral which crosses each of
the linear elements at a fixed angle . Find a simple expression for
the length of this spiral between any two of its points.

Solution by Huseyin Demir, Zonguldak, Turkey.

The cone is a developable surface. When developed the Y -spiral on
the cone is transformed into ay -logarithmic spiral on the plane, of
which the polar equation 1is:

r= ae (cot ¢)é

a
Then ds = Jdr2+ rdg? = sin U e (COt ¥)E go

Between two points on the spiral

b
o= — f elcotylogy =
siny .

b
e(cot\p)e‘b _ lrla

a cos Lp

cos Y

s = (b — a)/cos Y where a and b denote the distances of the points
from the vertex of the cone.

Also solved by Walter B. Carver, Cornell University; M. S. Klamkin,
Polytechnic Institute of Brooklyn; S. H. Sesskin, Hofstra College,
New, York; A.Sisk, Maryville College, Tennessee and the proposer.

Contributed Solution to Proposal 226:
Mathematics Magazine, 29, (1955-1956), 48.

226. [January 1955] Proposed by P. D. Thonmas, Eglin Air Force Base
Florida. ’

Tangents are drawn from a point P to an ellipse. If R and Q are
the points .of contact and O is the center of the ellipse, find the
~locus of P if the area of the the quadrilateral POOR remains constant.
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11. Solution by Huseyin,Demir, Zonguldak, Turkey. The ellipse is
an orthogonal projection of a circle. Let P'Q'OR’ be the corresponding
quadrangle. The locus of P’ is a concentric circle, for the two quad-

rangles are in a constant ratio (in ‘area). Hence the locus of P,
projection of P', is an ellipse homothetic with the original one.

Also solved by M..S..Klamkin, Brooklyn Polytechnic Institute;
S..H..Sesskin, Hofstra College; E..P.. Starke, Rutgers University;
Chih-yi Wang, University of Minnesota and the proposer.

Contributed Solution to Proposal 270:
Mathematics Magazine, 30, (1956-1957), 108.

Circles In A Crescent
270. [March 1956] Proposed by Leon Bankoff, Los Angeles, California.

A maximum circle is inscribed in a crescent formed by a semicircle
and a quadrant of a circle. Find a general expression for the radii
of consecutively tangent circles touching the sides of the crescent,
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the first touching the maximum circle, the second touching the first
and so on.

Solution by Huseyin Demir, Kandilli, Bolgesi, Turkey. Let the
given circles (0), (0') intersect each other at A and B, and let the
center and radius of the nth circle be denoted by (Un), r, respectively.

We invert the figure with center at A, k? = AB? = 4R? being the
power. Under the inversion, (0) is inverted into its tangent line

BHy, and (0') into the line B0', forming an angle of 2a=45° The
circles ( Q;), inverse of (0;), from a series of tangent circles in-

scribed in the above angle. Let ({,) touch BH, at H,. Then we may
easily find that the radius p, = Q,H, of (2 ,) is given by

_ 1- sina
g = ] A
l+ sin a

where
Po=Sfly = BH, tan & =2R tan a.

Drawing the common tangent AT,T, to the inverse circles (0,),
(Q,) we write

r, = AT, p,/AT, = AT, - AT, p, /AT, =k’p,/(AQ} - n?)
Denoting the projection of ) on AB by K, we have
2 2 4p2 2wl
AQn—pn —AKH+ KnQn—pn
= (2R + p,)2 +BH - P}

1]

4R? + 4R p, + (p, cot a)?

R zpn tana

r -
. AR% + 4R p, + P cot? a

Substituting the value of o in the above expression we arrive at the
desired result, namely
H e
n = 1+%[(1+sin 78)% +(1 - sin 7/8)%"] sec?™ /8 cot 7/8

Also solved by J.W. Clawson, Collegeville, Pennsylvania and the

proposer.
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Contributed Solution to Proposal 272:
Mathematics Magazine, 30, (1956-1957), 166.

273.[May 1956 ] Proposed by N.A. Court, University of Oklahona.

The points of intersection of the tangents to the circumcircle
of a triangle drawn at the ends of one side i1s collinear with the two
points which that circle marks on the median issued from the opposite
vertex and on the parallel through that vertex to the side considered.

I1. Solution by Huseyin Demir, Kandilli, Bolgesi, Turkey. Let the
median and exmedian relative to the vertex A intersect the circum-
circle at E, F respectively, and let K  be the intersection of the
tangents at the other vertices B, C. From the harmonic ratios

A (B, C, E, F) =(AB, AC, AE, AF) = -1

Contributed Solution to Proposal 332:
Mathematics Magazine, 32, (1958-1959), 52.

332, [January 1958] Proposed by Norman Anning, Alhambra, California.

Prove that there is no polynomial of degree 22 which is an exact di-
visor of z4%+ 1.

Wl Solution by Huseyin Demir, Kandilli, Eregli, Kda, Turkey. The great-
est degree of an exact factor is necessarily the number of imprimitive
roots of the given equation of which the roots are all distinct. Since the
number 45-¢ (45) = 45~24 = 21 of the imprimitive roots is less than 22,
there will be no such a factor.

Also solved by D.A.Breault, Station Hospital, Fort Monmouth, New
Jersey; C.F.Pingka University of Cincinnati; Norman Anning, Alhambra,
California and the proposer. One incorrect solution was received.
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Contributed Solution to Proposal 353:
Mathematics Magazine, 32, (1958-1959), 226.

Tangent Circles

353. [September 19581 Proposed by Karl M. Herstein, New York City, New
York.

Given a line and two points not on the line. Construct two equal cir-
cles whose centers are on the given line, which pass through the given
points and are tangent to each other.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz;, Turkey. Let A,
B, and d be the given points and the line. We distinguish two cases:

(1) The circles touch each other externally. Since the radii are equal

there are no solutions except when:

(a) The circles coincide. The coincident circles contain both 4
and B and the center is the intersection of d and the medial
line of 4B.

(b) The point L of tangency is at infinity : In that case the solu-
tion consists of the perpendiculars to d from 4 and B.

(2) The circles touch each other internally. The solutions, if they

exist, must be different from (1a) and (1b).

Take d as the z-axis and let A(-u, @), B(u, b) and L(A, 0). The cir-
cles contain the reflections of 4, B with respect to d and we may there-
suppose a > b > 0.

Let the circles intersect d at 4"(«, 0), L(A,0) and L, B*(f,0). We
have from the right triangles A’AL, LBEB":

a? = Wrw)(~u-=) b2 = (B-u)(u-\)

Equating the diameters (A-«) and (8-A) we get a cubic equation

98 4 (a,2+672-2u2)h- wa?-5%) =0
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Substituting a®- 52 = 2¢2, it reduces to
A4+ (0% c?uPr-uc?=0

There are one, two (equal), or three solutions according as the dis-
criminant A is positive, zero, or negative.
Now we find the relation for which

A =4p®+27¢% = 4(0%c%-u?)? 4+ 2Tu%c* < 0

2

where p = 52+ ¢?-4? is necessarily not positive. Hence,

2 =uZo0s?  where 0<t<Yn

b2+e?<u® or B%+c
A = 4(u*cos®t ~u?)®+27u%c* < 0
-4u®sin®2+27u%c* < 0
27c* < du*sin®;

Since the quantities are not negative

V27 c? < 2u?sin® < 2u?

We have finally

> 2% one real root

V27+/a%~b2? = 2u double or triple root

< 2u three real roots

Also solved by Sam Kravitz, East Cleveland, Ohio.

Contributed Solution to Proposal 374:
Mathematics Magazine, 33, (1959-1960), 113.

Equivalent Triangles

374. [March 19591 Proposed by Victor Thebault, Tennie, Sarthe, France.
If an arbitrary straight line ¢, passing through any point P of the plane
of a triangle ALC, meets the straight lines BC, CA and AB in points 4,,

3, and C, and the points obtained in prolonging the segments A,°, B P,
and C' > by three times their length are A, B/, and C/, then the mid-points
of AA{, BB and CC{, A,, I,. and C,, respectively, are the vertices of a
triangle, the arca of which is equal to that of triangle ARC.
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Il. Solution by lluseyin Demir, Kandilli, Eregli, Kdz, Turkey. We may
express the relations hetween the points by vectorial equalities and arrive
at the desired result by vectorial multiplication. We first note that the point
P is not necessarily on d. According to the notations as stated, we have

PA7=-3PA, and 2PA, = PA+PA;= PA-3PA,
Now
24 B, = 2APB,-PA,) = (PB-3PB,-PA+3PA)

248, = AB-34.B,
and similarly
24,C,= AC-34A,C, .

Multiplying the last two equalities member to member and denoting by
ABC the area of the oriented triangle ABC we get

14 B,C, = (AB-34,B) x(AC -34,C)

> - -» -+

C,+ AB,x AC) +94,B x A

- ABx AC-3(ABx A,C,+ AB, C

The last term being zero

14,B,C, = ABC -3(4ABx A

1

> - -+

A+ A Ax AC)

1 1

= ABC-3(4B-AC)x A A
- 4BC +3BCxCA = AMABC Q.E.D.

This problem may be generalized as follows : If 4 B,C, is an inscribed

triangle of ABC and if PA/ = -nPA, (in the present case n = 3), A4, =

mA;ll’ (in the present case m = }), then we have
A,B,C, = (1~-m)(1-2m+mn) ABC + m2(1-m) 2‘418101

Also solved by Christopher Henrich (partially) and the proposer.
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Contributed Solution to Proposal 383:
Mathematics Magazine, 33, (1959-1960), 228.

Disecting a Square

383. [September 19591 Proposed by Raphael T. Coffman, Richland, Wash-
ngton.

Cut any square into not more than six pieces which can be reassem-
bled to form a cube having its surface area equal to the area of the square.
Bending of the pieces is permissible.

l. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Let a be

the side of the square. The edge u of the cube is, by 6u? = a2, u = a\/6/6.
We develop the cube as shown in (1) and assemble the rectangles to form

the rectangle ABCD (2). Take AP = VAB-AD = \/3u-2u = u\/6. Let BE be
perpendicular to AB. Then from the similar triangles ABE and APD, having
BE : AB=AD : AP and BE = AB.AD/AP = AP?/AP = AP,

we can draw the square shown in (2), Comparing (2) and (3) we see the
equivalence of 4BCD and the square, the side of the latter being evidently
a. The number of pieces is 6 and is less than 7,

B
D p/ | c
I [
----- ——7 /
! : / 1 © 2
1 I ! 1
| 1 ]
o o o C ! ! D K : Sé 3
I |
A B
A 4
(1) (2)

Now, how the cube is obtained is shown by the drawings (3a), (3b)
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and (4). The solution is therefore completed. Ifone needs to cut the square
into pieces without the use of the rectangle ABCD (2), note the dimen-
sions of (5).

D P c

(§1]

(3

3

____XA --'0/3

(5)
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Contributed Solution to Proposal 387:
Mathematics Magazine, 33, (1959-1960), 233.

An Induction Proof

387. [September 1959] Proposed by D. S. Mitrinovitch, University of Bel-
grade, Yugoslavia.
Prove the relation,

—xt
ﬁ —1—elﬂf = emﬂ(mne"m)
9™ \1-¢ o dt"

n a natural number, by induction.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. The equal-
ity is evidently true for n = 0. Supposing it be true for n = p, let us prove
it for n = p+ 1. By hypothesis we have

P _ P
(1) i— -—1—e =t = ewd (zPe~7)
3P \1-t L, da?

The right hand side of (1) may be obtained from the Leibniz formula (D
stands for d/dz)

xp-—ke—:r

2 14 14
e (xPe”7) = exz (i)Dka .pP~keg—T _ ewz (-1)P=k(Py_P

dxP k (p_)l'
2( 1) (?’)?’ A=

As to the left hand side of (1), we have
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4 :
P (L) (L ) ed” (1 o
otP \1-¢t at? \1-¢ c?tp 14

29”7 4 e_l_ft_ea?a gt =

815?’ oz dz 9P
_ T
Replacing v = ¢ 7, (1) is reduced to
p
(2) [ Q_Q_.] p 22( 1)A(p)p Ae—e
dx grP
G, 92
Now, applying e ma—u to the left member of (2), we get
z

3P 9 gr' [ 92 9 ar=2 [ 52 92 g [ o2 \"u
o i W i B s VW =i 4 e £ U=sss = e
dr g¢gP  de P\ gx? dz 9gP—2 \ gaz? dz2 dz \ 9z?
and
2 2 \?
8_ :ri___ P =€_ ma_ =% = D(2D®)Pe2
dz \ gp2/ ™ z\ Jz?
t=0

The equality reduces therefore to (3)
(3) D(zD?)Pe~" = Z( 1) (p)P—:rAe“m.

The proof of the statement is complet,ed if we can prove (3) for p replaced
by p+ 1. Now,

D(xD 2Pt 1e=% = D(2D2) 2D ?)Pe™% = DaD[D(xD 2)Pe™7)
_DmDZ( 1) (p)p A e~ 7 DmDZa 2 e "

p-1
=(a1—a0)+z [(:\4"1)2 _(2)\+ l) ]g;he_'x+
A=l RS

[-(2p+ 1)ap ta,_ JazPe™ + apa:p"' le™?

p-1
(1) =—(p+1) !+ Z b,\wke"“"ﬁ (=1D)P~Up+1)2Pe %+ (=1)PaPt 17

A=1
where the first and the last two coefficients are obtained through a,, and

197
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bA =+ 1)2ah+1—(2)\+1)a)\+ak_1 (1gA<p-1)
=1+ 1)2(-1))‘“(;’1)( ft)! ~ (20 + 1)(=1) (7”)?’ )™ I(Afl)(;’l')'
= (DY ﬁmﬂp A (p-A+1) + (2A+ D) (p-A+1) + A 2]
:(—Dhﬂﬁimw (pr1)? = - lngiﬂ;)s (lez)!
- (oM ‘?’_;1,_’1

It is easy to see that the first and the last two coefficients of (4) are
, bp and bPH, and hence

ad 1,(p+1)!
D(zD?2)P~ 1" z Ll ))‘" p+ ) pL Ae"""" .
A=0

Thus the equality being proved for n = p+1, it will be true for all in-
tegral values of n and the proof is completed.

Contributed Solution to Proposal 400:
Mathematics Magazine, 34, (1960-1961), 53.

A Triangle Construction

400. [January 1960] Proposed by W. B. Carver, Cornell University.
Given a point, a circle, and any curve in a plane. Construct an equi-
lateral triangle having a vertex on each of them.

Il. Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Let A4, (b), (c) be the given point, circle and curve. If, then, ABC is
the solution, the vertex C on (c) is obtained from the vertex B on (b) by a
rotation about A with the angles 60 and —60 degrees. Hence the unknown
verticeés on (c) are obtained by intersecting (¢) with new positions of (b)
after such rotations. The constructions of the triangles are then immediate.

Also solved by Harry M. Gehman, University of Buffalo; Rostyslaw
J. Lewyckyj, University of Toronto; Harvey Walden (partial solution); and
the proposer.
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Contributed Solution to Proposal 401:
Mathematics Magazine, 34, (1960-1961), 55.

A Fibonacci Series
401. [January 1960] Proposed by John M. Howell, Los Angeles City College.
Given a sequence of numbers related by F (n) = aF (n-1)+ bF (n-2),

F(0) = ¢c and F (1) = d, wheren =0, 1, 2, ... and a, b, ¢, and d are any real
numbers. Find a general form for F (n).
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Il. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
We have successively

F(0)=c =c
F()=d i
F(2)=aF (1) + bF (0) =((1))ad+(g)bc
F(3)=aF (2)+bF (1)
_(a®+ B)F (1) + abF (0) - [(ra2+ D+ [()ab o

F(4) =aF (3) + bF (2)

_ (g% +2aB)F (1) + (@%b + B)F (0) = [(3)a3+(f)ab]¢z+[(g)am(})52]0

and in general

Fa = [y e (M2 (P02 1 g

[(n 2" n—=2 (n13) n—dp (ﬂ' -4 Ya™— %52 + ]bc

which may be proved by induction.

lil. Alternate solution by Huseyin Demir.
Writing the relation for n = 2, ..., n we have a system of equations in
the unknowns F (2), +++, F (n):

F(n)-aF (n-=1)=bF (n-2) =0
F(n-1)-aF (n-2)-bF (n-3) =0

F(4)-aF (3)-bF (2)=0
F(3)-aF (2)= bF (1)

F(2)= aF (1) - bF (0)

The determinant of the system being 1 we have
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0 -a -b 0 0
0 1 -a =5 O
0 1 -a =b
F(n) =
0O O 1 -a -5
bd 0 0 1 -a
ad+bec 0 ... 0 1],

where the index denotes the order of the determinant.

Expanding it with respect to the first column and arranging, we have

the final result

a b 0 0 a b 0

-b a b -b a b
0 -b b 0 -b b

F(n)=(bc +ad) ¢ +bd| | ¢
-b b -b a
0 0 -b al,_, 0 0 -b

IV. Altemate solution by Huseyin D emir.
Writing the given relation
Fn)=aF (n=1) +bF (n-2)
in the form

F (n) 4 b
F(n-1) F(n-1)/F (n-2)

and letting %, = F (n)/F (n-1) we have successively

u, =a+b/u

n n—1
a+b/u,_,
. b
u, =a+ :
a+
a+
a+ b
a+d/c

Multiplying member to member the relations

n—1

201
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Fn) = uF (n-1)

F(2) = u,F (1)
FQ) =u,F(0)

we have for the general form for F (n) :

Fn)=uuyu, c

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Wal-
tham, Massachusetts; R.G. Buschman, University of Oregon; F'.D. Parker,
University of Alaska; Charles F. Pinzka, University of Cincinnati; Chih-
yi Wang, University of Minnesota,; and the proposer.
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Contributed Solution to Proposal 412:
Mathematics Magazine, 34, (1961), 175.

Projective Correspondence

412. [May 1960] Proposed by D. Moody Bailey, Princeton, West Virginia.

P is any point on the circumcircle of triangle ABC. Rays from B and
C through P meet CA and AB at points E and ¥ respectively. Considering
the segments involved as directed quantities, show that

where a, b, and ¢ are the sides opposite the vertices 4, B, and C of tri-
angle ABC.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Having a projective correspondence between the points £ and F', we
have, letting e = CE/EA, f = BF/F A, the bilinear relation

A.ef+B.e+C-f+D=0

where 4, B, ¢, D are constants. To find the values of these coefficients
we let P coincide with the points 4, B, C successively. If P = 4, ¢ and f
are infinite and 4 = 0. If P = B, then BE is an exsymedian; and we have

e=-a’/c?, f=0 and hence
2 2
28 D0 of B=ZD
c? a’
and similarly
2 2
AT +D =0 or O=§)—D.
b? a®

Substitution gives the required result.

Also solved by Josef Andersson, Vaxholm, Sweden; Leon Bankoff,
Los Angeles, California; A. F. Hordam, University of New England, Armi-
dale, NSW, Australia; and the proposer.
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Contributed Solution to Proposal 427:
Mathematics Magazine, 34, (1961), 303.

A Cevian Relation

427. [November 19601 Proposed by D. Moody Bailey, Princeton, West Vir-
ginia.

P is any point in the plane of a triangle ABC through which cevians
from B and C are drawn meeting sides C4A and AB at points £ and F re-
apectively. M is the midpoint of BC and line MP meets C4 at N and 4B at
0. EF extended meets BC at & and a line through B parallel to AG meets
CF at H. Show that HO is parallel to C 4.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.
Let the points 4, B, C, M and F' be fixed and the geometrically inter-
related points P, O, N, G, E, H be variable. Then from

M _B _F
OxPxERGxAGKxBH R H
we have O x H of which F' being the self corresponding element we deduce
the perspectivity O x H. Hence OH passes through a fixed point L. When
O is at infinity on AB, H is also at infinity on CF, and hence L is at in-
finity, OH keeps then a fixed direction. But when O = B, having OH =
BH//AB the proof follows.

Also solved by the proposer.

Contributed Solution to Proposal 428:
Mathematics Magazine, 34, (1961), 303.

Permuted Digits

428. [November 1960] Proposed by Murray S. Klamkin, AVCO, Wilmington,
Mas sachusetts.

The number N = 142,857 has the property that 2N, 3N, 4N, 5N, and
6N are all permutations of N, Does there exist a number M such that 2/,
3M, aM, 5M, 6M, and 7TM are all permutations of M?

l. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Since we get all permutations of M by 1M, 2, ..., TM the number M,
if it exists, is a seven-digit number.

Let M = abedefg = Gg where G

p-Gg = gG. Then

abedef and let 1 < p <7 such that

p(10G + ¢) = 10°%¢+ @
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or
¢ U0°-pg _» g
(10p-1) ? Dyp
Now
P NP Dp N:a/ﬂ')?7 (Np/?»)/Dp
1 999,999 9 111,111
2 999,998 19 Irreducible
3 999,997 29 Irreducible
4 999,996 39 = 3.13 . Irreducible
5 999,995 49 = 7.7 Irreducible
6 999,994 59 Irreducible
7 999,993 69 = 3.23 . Irreducible

Since the coefficient NP/DP of ¢ is not an integer except when p =1,

there is no solution for G other than ggg,ggg. But ¥ = Gg = ggggggg can-
not be a solution.
Hence there is no solution to the problem.

Il. Comment by Dermott A. Breault, Sylvania Electric Products, Inc.,
Waltham, Massachusetts.

The number M = 5882352941176470 has the property that kM is a per-
mutation of M for k& = 2, 3, -+, 16. The number

L = 3448275862068965517241379310

has the property that 4L is a permutation of L for & = 2, 3, -.., 28. (M con-
sists of the digits in one cycle of the decimal expansion of 1/17, and is
16 digits long, while L was similarly derived from 1/29. I believe that it
is correct that when p is prime and 1/p = @ has cycle length p -1, then 4@
will be a permutation of @ for &k = 2, 3, --.. p~1.)

Contributed Solution to Proposal 432:
Mathematics Magazine, 34, (1961), 365.

Cevian Lines

432. [January 1961] Proposed by Lee Tih-Ming, Taipei, Taiwan.

A point O interior to triangle AB(C is joined to the vertices. From O
perpendiculars 0X, OY, OZ are dropped to the sides BC, CA, AB, respect-
ively. A0 and YZ intersect in D, BO and ZX in E, and CO and XY in F.
Show that

AZ BXCY ZD YF XE

ZB XC YA DY FX EZ
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Il. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
The point O is not necessarily within the triangle. Letting

« =X BAO B =% CBO y =X ACO
«" =X 0AC B’ =X OBA vy’ =X OCB
we write from the triangles such as AZD and ADY, the relations
ZD AZ DY YA nd ZD AZ sin«

= = — I e—

sin« sinD’ sin«’ sinD DY YA sin«’
and two others. Multiplying the three ratios member to member we obtain
ZD YF XE AZ BX CY [ sinx sinf8 siny)

DY FX EZ ZB XC YA \sin«’ sinp’ siny’

But the expression in the parenthesis is 1, since 40, BO, CO are con-
current. Hence the equality is true for all points in the plane of ABC.

Also solved by Brother Alfred, St. Mary’s College, California; Josef
Andersson, Vaxholm, Sweden; C. W. Trigg, Los Angeles City College;
Dale Woods, Oklahoma State University; and the proposer.

Contributed Solution to Proposal 435:
Mathematics Magazine, 34, (1961), 368.

Triangular Extrema

435. [January 1961] Proposed by M. S. Klamkin, AVCO, Wilmington, Mass-
achusetts.

Determine the largest and the smallest equilateral triangles that can
be inscribed in an ellipse.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Let A A,4, be an equilateral triangle inscribed in the ellipse

(1) (@*/a®) + (/6" =1 (B) a>b
and let
(2) (w-u)2+(y-'v)2-r2=0 (Q)
be the circle circumscribed to 4 ,4,4,. It cuts (E) at the fourth point
Az, y,)

Eliminating y between (1) and (2) we get an equation of fourth degree
in

3

et et -4a?c?u. 23 +... =0

of which the roots are z , z,, z,, z,.
If we elimate # between (1) and (2), the corresponding equation will be

04.y4+4bgc2v.ya+... - D
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and the roots are Vis Uai Vg Yo
Since 4 A,4, is an equilateral triangle, we have

Z te,tw, = 3u

Yi+Yg+¥Ys = 3v

and
2 2
z, =Zm,£-3u = 4‘32u_3u _(a®+3b0%u
c c?
(3) ) 2 2
¢ c
The coordinates (3) satisfying (1) we obtain the relation
(4) @Y «H+@?/8 = 1
where
o = acz " B = 602 .
.:z2+31’)2 b2+3a2

Hence the centers of the circles (Q) lie on the ellipse (4) of which « > 3.

Now since the largest and the smallest triangles correspond to the
greatest and the smallest values of the radius r of the circle (Q), we
write

r? = (2, -0) 4 (y, -0) "

_ (a—u)2u2+(b+8)21}2
3 132
= Au2+(6+6)2 =Bv2+(a-w?.
dr/du = 0 gives
=0 and r =b+f.
Similarly dr/dv = 0 gives

7‘2=a-—rx,

and one may readily verify that r > r,.

Hence, the largest (smallest) equilateral triangles inscribed in the
ellipse, are ones inscribed to the circles of center u = 0, » = + B8 (u = + =,
v = 0) and radius 6+ (a-«).

There are four solutions, two for the largest and two for the smallest
triangles.

Constructions : The largest (smallest) triangles inscribed in an el-
lipse, have one of their vertices at the extremities of the minor (major)
axis of the ellipse, the axis being the axis of symmetry of the triangle.

Also solved by Josef Andersson, Vaxholm, Sweden; J. W. Clawson,
Collegeville, Pennsylvania (Two solutions); and J. W. Mellender, University
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Contributed Solution to Proposal 445:
Mathematics Magazine, 35, (1962), 317.

445. [March and November 1961]. Comment by Huseyin Demir, Middle East
Technical University, Ankara, Turkey.

The proof needs a little modification. Read: Let the orthogonal projection of
A, B and P on the line OM be 4’, B’ and P’. In the remaining part of the proof
all letters P are to be replaced by P’ and in conclusion we have
MA*—k 20M-A'P° A'P" PA

MB*—F% 20M-B'P' BP PB
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Contributed Solution to Proposal 476:
Mathematics Magazine, 35, (1962), 312.

Perimeter and Area Bisector
476. [March 1962]. Proposed by Kaidy Tan, Fukien Normal College, China.
Draw a straight line bisecting the perimeter and area of a given quadrilateral.

Solution by Huseyin Demir, Middle East Technical University, Ankara, Tur-

key.
We consider two cases according as the line intersects two adjacent or two
opposite sides. Either case includes the case in which the line contained a vertex.

I. The line intersects two adjacent sides (fig. 1.)

D

(a) The line bisects the area:

Drawing CC'||[BD we have area ABCD=ABD+BCD=ABD+BC'D=AC'D.
Let I be the midpoint of AC’, and M be a point on 4B. Drawing IN||MD we
have AMN=AIN+IMN=AIN+IDN=AID=%4AC'D=%44ABCD. Hence MN
so constructed bisects the area. The constructions give:

Let AM=m, AN=mn, then

AC'/AC = AB/AK = a/a, AC' = a-AC/a = pa/a.
AM/AD = AI/AN, mn = AI-AD = 3AC'-d = pad/2a.
2mn = pad/a.
(b) The line bisects the perimeter:
m+n=AM + AN = }(a + b + ¢ + d).

Therefore m, n determining the line M N are the roots of the quadratic equa-
tion:

22 — (@ + b+ ¢+ d)x + pad/a = 0

For the existence of M N we have the conditions:
(1) m<b,n<dora+b+c+d=2m~+2n<2b+2d or b+c<a+d
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(2) pad/a=2mn<2ad or p L<2a, a+v2a, a2>7.
3) A=(a+b+c+d)*—8pad/a>0.
II. The line intersects two opposite sides.

(a) The line bisects the area:

=<

Fi1Gc. 3

Let M be any point on AB (fig. 3). Draw BB'||MC, and AA4’| MD. Then:
ABCD = AMD 4+ MCD + BCM = A'MD + MCD + B'CM = MDA’
+MCD+MB'C=MB’'A’. If N is the midpoint of A’B’, the lkne M N will bi-
sect MB'A’=ABCD. Let OM=m, ON=n, 0A=da', OB=bV, OC=¢', OD=d’,
0A'=a"", OB"=0b". Then from the constructions:

m/c} - b!/b”" m/df - a»‘/a.ﬂ'
2n=a" + b =ad/m+bc/m=(dd + ¥bc)/m

2mn = a'd + b'c’.

(b) The line bisects the perimeter:

MA+ AD+ DN = MB + BC+ CN
m—a)—d+n—4d)= 0" —m)+ b+ (' —n)

2m+n) = (@ +b¥ ++d)+ (b—d)

Therefore m, n determining the line M N are the roots of the quadratic equation

25 — (@ + b0+ +d +b—d)x+ (a'd + b¢) =0.
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The existence of MN is given by ¢’ <m<b’, d'<m<c¢ which yield a+c+b
>d and a+c+d>b which are always true.

Contributed Solution to Proposal 646:
Mathematics Magazine, 40, (1967), 226.

The Complete Quadrilateral
646. [January, 1967] Proposed by V. F. Ivanoff, San Carlos, California.

Denoting the pairs of opposite vertices of a complete quadrilateral by 4 and
A’, B and B’, C and (’, respectively, prove that

AB-AB AC-AC

A'B-A'B A'C-A'C’

I. Solution by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

Writing the equality in the form
(AB/AC)(AB'/AC")(A'C'/A'B)(A'C/A'B") = 1
and replacing each fraction by its equivalent given by the sine law we have
(sin C/sin B)(sin C’/sin B’)(sin B/sin C’)(sin B'/sin C) = 1

which is an identity.

Contributed Solution to Proposal 653:
Mathematics Magazine, 42, (1969), 283.

Exponential Derivative
653. [March, 1967] Proposed by by Sam Newman, Atlantic City, New Jersey.
What is dy/dx of
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III. Solution by Huseyin Demir, Middle East Technical University, Ankara,
Turkey.

The given function may be defined by the recurrence relation y, =x¥1,
y1=x% vo=%, ya=1. Taking logarithms and differentiating we obtain

! !
yﬂ _ an—l (yn_]_ ln x) + yﬂ—-l

Vn YVn—-1 X

Writing the last equality from #=1 up to = and multiplying each relating
by a suitable factor and adding them up we get

Vi = D Yn¥a—1 * * * Yi1(In 2)¥/2.

k=0

Also solved by Prerre Bouchard, Université de Moniréal, Canada; Nicholas C. Bystrom, St. Paul,
Minnesota; Richard W. Feldman, Lycoming College, Pennsylvania; David Feltner, City College of
New York; Reinaldo E. Giudici, University of Pitisburgh; Michael Goldberg, Washington, D.C.;
Sandra A. Gossum, University of Tennessee; J. M. Howell, Los Angeles City College; Richard A.
Jacobson, Houghton College, New York; Lew Kowarski, Morgan State College, Maryland; Fred
Lambie, Lexington, Massachusetts; Douglas Lind, University of Virginia; Edwin A. Power, Uni-
versity College, London, England; and the proposer. A number of incorrect or undecipherable solu-
tions were received.
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Contributed Solution to Proposal 1199:
Mathematics Magazine, 58, (1985), 243.

Perpendicular Lines in an Isosceles Triangle September 1984

1199. In the isosceles triangle ABC, with AB= AC, let H be the foot of the altitude from A4, let
E be the foot of the perpendicular from H to AB, and let M be the midpoint of EH. Show that
AM L EC. [ Aristomenis Siskakis, University of Illinois.)

B

Solutions 1 and 1I: 1. Let CK be the altitude from C. In the similar right triangles EHA and
KBC, the corresponding medians AM and CE make equal angles with the hypotenuses HA and
BC. Let these medians intersect at L. Then the quadrangle HCAL is cyclic. Hence ZALC =
ZAHC =90°.

II. We use harmonic pencils. Let CK be the altitude from C, and construct the rectangle
AKCN. Since the segment HE, parallel to AN, is bisected by AM, we have (4B, AH; AM,AN)=
—1. Similarly, since the segment BK, parallel to CN, is bisected by CE, we have
(CK,CB; CE,CN)= —1. In the two harmonic pencils, three lines are perpendicular to corre-
sponding lines. Hence the fourth lines, namely, AM and CE, are perpendicular.

HUSEYIN DEMIR
Middle East Technical University
Ankara, Turkey

Also solved by sixty-two others (including the proposer and eight students), who submitted seventy-three solutions.

Joseph Konhauser located the problem in the Monthly, problem E1476, with three published solutions in v. 69
(1962), p. 233. Four other solvers of that problem forgot to mention the fact when submitting solutions to this
problem. P. J. Pedler (Australia) and J. H. Webb (South Africa) found the problem in Loren C. Larson, Problem
Solving Through Problems, p. 27, and Geoffrey A. Kandall found it in M. N. Aref & W. Wernick, Problems and
Solutions in Elementary Geometry, p. 32, ex. 92. O. Bottema (The Netherlands) and Webb provided converses. (1) If
ABC is any triangle, then AM L EC if and only if AB= AC. (2) If E is any point on the line AB, then AM 1 EC if
and only if either HE L AB or A is the midpoint of BE. (Other points are defined as in the problem statement.)
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Contributed Solution to Proposal 1256:
Mathematics Magazine, 61, (1988), 54.

Cyclic Quadrilateral December 1986
1256. Proposed by R. S. Luthar, University of Wisconsin Center, Janesville.

Let ABCD be a cyclic quadrilateral, let the angle bisectors at A and B meet at E,
and let the line through E parallel to side CD intersect AD at L and BC at M. Prove
that LA + MB = LM.

II. Solution by H. Demir and C. Tezer, Middle East Technical University, Ankara,
Turkey.

Let #DAB=2a, ~ABC=2B, +BCD =2y, 2CDA =28. Clearly, ~ELA =28,

ZBME =2y, and a = -g— Y. B= g-— 8. We'll assume that ABCD is convex and
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a> .
Choose a point S on LM on the same side of AD as M such that |LS|=|LA]| (see
figure).

Obviously, ZASL = 2LAS = . Therefore, ASEB is a cyclic quadrilateral. As
£LAS =B < a = ZLAE, it follows that S is between L and E.

On the other hand, ~SBM = /SBE + #EBM = #SAE + ~EBM = # LAE — / LAS +
B=a— B+ B=a=2BSM. Consequently, MBS is an isosceles triangle and |MS|=
|MB|. Therefore, |LM|=|LS|+ |SM|=|LA|+ |MB|.

II1. Solution by John P. Hoyt, Lancaster, Pennsylvania.
Produce DA and CB to meet at X. Draw FH parallel to AB. Draw XE (see figure).

X

Since E is the intersection of two exterior angles of triangle XAB, XE is the
bisector of £ AXB. Triangles MLX and HFX are congruent because they have equal
angles and a common angle bisector. The equal angles follow from the fact that the
opposite angles of a cyclic quadrilateral are supplementary. Hence ME = FE, HE =
LE, and HM = LF. Since FH is parallel to AB, and AE bisects £ DAB, ZFAE =
2 AEF . Thus, triangle FAE is isosceles, and AF = FE. Similarly, BH = EH.

The rest follows easily: LA + MB=(AF— LF)+ (BH+ HM)=(AF + BH) +
(HM — LF) = AF + BH = FE + EH = LM.

Also solved by Frank Allen, Farid G. Bassiri (student), Andreas Bender (student, Switzerland),
Nirdosh Bhatnagar, David Earnshaw (Canada), Howard Eves, Herta T. Freitag, Richard A. Gibbs, ]J. T.
Groenman ( Netherlands), Michael B. Handelsman, P. L. Hon ( Hong Kong), King Jamison, Geoffrey A.
Kandall, Ts=-Mie Ko (student), Mary S. Krimmel, L. Kuipers (Switzerland ), Kee-wai Lau ( Hong Kong),
J. C. Linders (The Netherlands), David Morin (student, four solutions), Anna Michaelides Penk, Farhood
Pouryoussefi (student, Iran), Harry D. Ruderman, Kiran Lall Shrestha (Nepal), J. M. Stark, M. Vowe
(Switzerland ), Harry Weingarten, and Brent Young (student).

Most of the solutions were based on trigonometric arguments (an impressive variety of trigonometric
identities). A brillant, purely geometric, solution, due to Gregg Patruno (U.S.A.), appears in Murray
Klamkin's International Mathematical Olympiads, 1978-1985, New Mathematical Library, No. 31, MAA
(solution to Problem 1, 1985).
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