[10+10 points] 1
1. Evaluate the following limits.

[Do not use L’Hépital’s Rule! ]
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[20 points] 2
2

2. Find _Q if y is a differentiable function of x satisfying the equation:
d:c
z,y)=(r/6,7/3)
ysin(2y — z) = 2z
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[20 points] 3

3. The points P and @ are moving along the graph of a twice-differentiable function y = f () in the
zy-plane in such a way that their coordinates are differentiable functions of time ¢, and the tangent line
to the graph at the point P intersects the graph also at the point @ at all times. (Assume that the
coordinates are measured in meters and the time is measured in seconds.)

Find f"(2) if

(@ the z-coordinate of @ is —1 and decreasing at a rate of 3 m/s when the z-coordinate of P is 2
and increasing at a rate of 4 m/s,

(2 y =9z — 8 is an equation for the tangent line to the graph of f at the point with o = 2, and
(3) y = —6z — 23 is an equation for the tangent line to the graph of f at the point with z = —1.
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[5+5+5+5 points] 4

4. In each of the following, if the given statement is true, then mark the [ to the left of Trus
with a X and prove the statement; otherwise, mark the O to the left of Farse with a X and give a
counterexample.

a. If fis differentiable on (0,00) and f(1/z) = f(z) for all « > 0, then there is a ¢ in (0, 00) such
that f'(c) = 0. JXTRUE O FaLse
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b. If f is differentiable on (0,00) and f(2*) = (f(x))? for all z > 0, then there is a ¢ in (0, c0) such

that f'(c) = 0. T O F.
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c. If f is differentiable on (0,00) and f(z)f(2z) > 0 for all « > 0, then there is a ¢ in (0, 00) such
that f'(c) = 0. O Truk ﬂ/FALSE
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d. If f is differentiable on (0,00) and f(z)f(2z) < 0 for all z > 0, then there is a ¢ in (0, c0) such
that f’(c) = 0. ﬂTRUE O Favse
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[17+3 points] 5
5. A cwice-differentiable function f on (—oo, c0) satisfies the following con..tions:

@® f(-=5) =0, f(-3)=A, f(0) =B, f(3) = C, where A4, B, C are real numbers such that
2<A<C

© tm fl@)= -2, lim () =2
3 f(z) >0 for <0, f'(x) <0 for z >0
@ f"(0)=0, f"(z)>0 for z < —3 and for >3, f"(z) <0 for —3 <2 <0 and for 0 < z < 3

a. Sketch the graph of y = f(z) making sure that all important features are clearly shown.
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b. Fill in the boxes to make the following a true statement. No explanation is required.
3
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The function f(z) = m

satisfies the conditions @-@ if a, b and ¢ are chosen as

a= Z, , b= 25,0 and c= 541




