

Quiz # 02 Math 101 Section 03 Calculus I 9 October 2024 Wednesday Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

- **Q-1**) (i) Find m_1 which is the slope of the parabola $y = x^2$ at $P = (s, s^2)$.
 - (ii) Find m_2 which is the slope of the parabola $y = x^2 4x + 7$ at $Q = (t, t^2 4t + 7)$.
 - (iii) Find m_3 which is the slope of the line PQ.
 - (iv) Setting $m_1 = m_2 = m_3$ solve for s and t if possible.
 - (v) If these two parabolas have a common tangent, then write an equation for this common tangent in the form Ay = Bx + C, where A, B and C are integers. If no common tangent exists, then explain why.

Grading: 1+1+2+2+4=10 points

Solution: Grader: gunes.akbas@bilkent.edu.tr

- (i) y' = 2x, so at P we have $m_1 = 2s$.
- (ii) y' = 2x 4, so at Q we have $m_2 = 2t 4$.
- (iii) Using the coordinates of the points P and Q we can write $m_3 = \frac{(t^2 4t + 7) (s^2)}{t s}$.
- (iv) From $m_1=m_2$ we get s=t-2. Substituting this into m_3 and solving $m_3=m_2$ for t we find $t=\frac{11}{4}$. This in turn gives $s=\frac{3}{4}$.
- (v) From (iv) above we found that the line PQ is tangent to both of these parabolas and we saw that $m_1=m_2=m_3=\frac{3}{2}$. Now we can write an equation for this line and after simplifying we get 16y=24x-9.