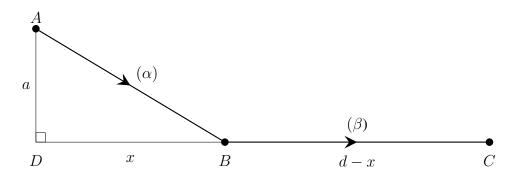


Quiz # 05 Math 101 Section 07 Calculus I 14 November 2024 Thursday Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Q-1) The cost of a pipeline from A to B is α TL/km, and from B to C is β TL/km. Here 0 < a, d are in km units, $0 < \alpha, \beta$ are real numbers, and DBC is a straight line. Let f(x) denote the function that gives the total cost of a pipeline from A to C via B as in the figure below.



- (i) Write f(x) explicitly together with its domain.
- (ii) Calculate f'(x).

(iii) Find x_0 such that $f'(x_0) = 0$.

- (iv) Calculate f(0), and f(d).
- (v) Calculate the minimum value of f when $(a, d, \alpha, \beta) = (7, 24, 17, 15)$.
- (vi) Calculate the minimum value of f when $(a, d, \alpha, \beta) = (7, 24, 15, 17)$.

Hint: $7^2 + 24^2 = 25^2$, $8^2 + 15^2 = 17^2$ and $13 < \frac{105}{8} < 14$.

Grading: 1+1+2+2+2+2=10 points

Solution: Grader: gunes.akbas@bilkent.edu.tr

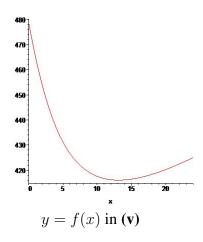
(i)
$$f(x) = \alpha \sqrt{x^2 + a^2} + \beta(d - x), x \in [0, d].$$

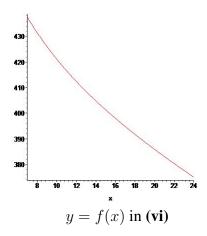
(ii)
$$f'(x) = \frac{\alpha x}{\sqrt{x^2 + a^2}} - \beta$$
 (iii) $x_0 = \frac{\beta a}{\sqrt{\alpha^2 - \beta^2}}$ when $\alpha > \beta$, and does not exist otherwise.

(iv)
$$f(0) = \alpha a + \beta d$$
, $f(d) = \alpha \sqrt{d^2 + a^2}$.

(v) In this case $x_0 = 105/8 \in (0, 24)$ so it is an acceptable critical point. We calculate f(0) = 479, $f(x_0) = 416$, and f(24) = 425. So the minimum cost is 416 TL.

(vi) In this case x_0 does not exist so we calculate f(0) = 513 and f(24) = 375. Thus the minimum cost is 375 TL.





Remark: Note that $f''(x) = \frac{\alpha a}{(x^2 + a^2)^{3/2}} > 0$ so the graph of y = f(x) is always concave up.

If $\alpha > \beta$, then f'(x) = 0 has a root, $x_0 = \frac{\beta a}{\sqrt{\alpha^2 - \beta^2}}$. Our function f(x) decreases until $x = x_0$ and then increases. Therefore if $x_0 \in (0,d)$, then the minimum value of f(x) is $f(x_0)$. Otherwise the minimum value is f(d).

If however $\alpha \leq \beta$, then f'(x) = 0 has no root and the function is always decreasing. Hence the minimum value is always f(d).