

Quiz # 02 Math 101 Section 01 Calculus I 7 October 2025, Tuesday Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the function

$$\phi(x) = \begin{cases} x^3 + 2x & x \le 3\\ ax + b & x > 3 \end{cases}$$

where a and b are constants to be determined.

- (i) Find all a and b for which $\phi(x)$ is continuous at x = 3.
- (ii) Find all a and b for which $\phi(x)$ is differentiable at x=3.

Grading: 5+5=10 points

Grader: emre.sahiner@bilkent.edu.tr

Solution:

(i) For ease of notation let $f(x) = x^3 + 2x$ and g(x) = ax + b.

For continuity at x=3 we need to have f(3)=g(3). This gives 33=3a+b. Thus for all such a and b, the function $\phi(x)$ is continuous at x=3.

(ii) Since ϕ cannot be differentiable at x=3 if it is not already continuous there, we must first have 33=3a+b.

Next we need the slopes of both f and g agree at x=3 so that ϕ will be differentiable there.

Note that $f'(x) = 3x^2 + 2$, f'(3) = 29, g'(x) = a, g'(3) = a. Since we need f'(3) = g'(3), we must have a = 29. This then together with 3a + b = 33 gives b = -54.

Conclusion: $\phi(x)$ is differentiable at x=3 only for the values a=29 and b=-54.

In the first graph $a=2,\,b=10$ and ϕ is discontinuous. In the second graph $a=2,\,b=27$ and ϕ is continuous. In the third graph $a=29,\,b=-54$ and ϕ is differentiable.