Date: 30 July 2001, Monday Instructor: Ali Sinan Sertöz

Time: 10:00-12:00

NAME:....

STUDENT NO:

Math 102 Calculus II – Final Exam Solution Manual

1) Calculate
$$\lim_{x\to 0} \frac{3\tan x^2 - 3x^2}{7x^6 + 8x^7}$$
.

Solution 1) First find the Taylor expansion of $\tan \theta$.

$$f(\theta) = \tan \theta, \ f(0) = 0,$$

$$f'(\theta) = \sec^2 \theta, \ f'(0) = 1,$$

$$f''(\theta) = 2\sec^2\theta\tan\theta, \ f''(0) = 0,$$

$$f'''(\theta) = 4\sec^2\theta\tan^2\theta + 2\sec^4\theta, \ f'''(0) = 2,$$

so
$$\tan \theta = \theta + \frac{\theta^3}{3} + \text{higher terms},$$

$$3\tan x^2 = 3x^2 + x^6 + \text{higher terms}.$$

so
$$\tan \theta = \theta + \frac{\theta^3}{3} + \text{higher terms},$$

 $3 \tan x^2 = 3x^2 + x^6 + \text{higher terms}.$
Hence $\frac{3 \tan x^2 - 3x^2}{7x^6 + 8x^7} = \frac{x^6 + \text{higher terms}}{7x^6 + \text{higher terms}} \to \frac{1}{7} \text{ as } x \to 0.$

2) Find the maximum value of the function
$$f(x,y) = 5x + 2y + xy - x^2 - y^2$$
.

Solution 2)

$$f_x = 5 + y - 2x = 0$$
, $f_y = 2 + x - 2y = 0$. The only solution is $(4,3)$.

$$f_{xx} = -2$$
, $f_{xy} = 1$, $f_{yy} = -2$.
 $\Delta = f_{xx}f_{yy} - f_{xy}^2 = 3 > 0$.

$$\Delta = f_{xx}f_{yy} - f_{xy}^2 = 3 > 0.$$

Hence (4,3) is a local maximum point, but since it is the only critical point it must be the global maximum point. Thus the maximum value of the function is f(4,3) = 13.

3) Calculate
$$\lim_{R\to\infty} I_R$$
, where $I_R = \int_0^R \int_{y^2}^{R^2} y e^{-x^2} dx dy$.

Solution 3)

Changing the order of integration we get
$$I_R = \int_0^{R^2} \int_0^{\sqrt{x}} y e^{-x^2} dy dx = \int_0^{R^2} e^{-x^2} (\frac{1}{2}y^2|_0^{\sqrt{x}}) dx =$$

$$\frac{1}{2} \int_0^{R^2} x e^{-x^2} dx = \frac{1}{4} (-e^{-x^2}|_0^{R^2}) = \frac{1}{4} (1 - e^{-R^4}).$$

So
$$\lim_{R\to\infty}I_R=\frac{1}{4}$$
.

4) Let S be the surface $z + x^2 + y^2 = 1$, $z \ge 0$, and \vec{n} the unit normal vector of S pointing outwards. Consider the vector field $F = (-y + xz + z^2, x + yz^2 + z^3, z^7 - z)$. Calculate $\iint_{S} \mathbf{curl} F \cdot \vec{n} d\sigma$.

Solution 4) The boundary of S is the unit circle in the xy-plane parametrized as $\vec{r}(t) =$ $(\cos t, \sin t, 0), 0 \le t \le 2\Pi.$

 $\mathbf{curl} F = \nabla \times F$, and Stokes' theorem says $\iint_S \nabla \times F \cdot \vec{n} d\sigma = \oint_C F \cdot d\vec{r}$.

 $F|C = (-\sin t, \cos t, 0).$

 $d\vec{r}(t) = (-\sin t, \cos t, 0)dt$

 $F \cdot d\vec{r} = dt$.

So the required integral becomes $\oint_C F \cdot d\vec{r} = \int_0^{2\pi} dt = 2\pi$.

It is also possible to calculate the integral $\int \int_S \nabla \times F \cdot \vec{n} d\sigma$ directly. For this let $f = z + x^2 + y^2 - 1$.

 $\nabla f = (2x, 2y, 1), R = \{(x, y, 0) | x^2 + y^2 \le 1\}, \mathbf{p} = \mathbf{k}$

 $\operatorname{curl} F = (-2yz - 3z^2, x + 2z, 2)$

 $\vec{n} = \frac{\nabla f}{|\nabla f|}, \ d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|}.$ Hence $\mathbf{curl} F \cdot \vec{n} d\sigma = \mathbf{curl} F \cdot \nabla f dx dy,$

and the required integral becomes $\iint_R \mathbf{curl} F \cdot \nabla f dx dy = \iint_R [4y(1-x)(1-x^2-y^2) - 6x(1-x^2-y^2)] dx$ $(x^2 - y^2)^2 + 2xy + 2dxdy = \int_0^{2\pi} \int_0^1 (2 + 2\cos\theta\sin\theta) r dr d\theta = 2\pi.$

5) Let K be the regular octagon shown in the figure. Let $\vec{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$. Calculate the counterclockwise circulation, $\int_{\mathbb{R}} \vec{F} \cdot \mathbf{T} ds$, of the vector field \vec{F} around K.

Solution 5) This is a version of Example 6 on page 1092 of the book.

Let C be a circle of radius ϵ centered at the origin, where $0 < \epsilon < 1/2$. Orient C counterclockwise. Let E be the region between K and C. By direct calculation we find $\operatorname{div} \vec{F} = 0$. By Green's theorem we have

$$\int_{K-C} \vec{F} \cdot \mathbf{T} ds = \int \int_{E} \operatorname{div} \vec{F} dA = 0.$$
so
$$\int_{K} \vec{F} \cdot \mathbf{T} ds = \int_{C} \vec{F} \cdot \mathbf{T} ds.$$

C is parametrized as $r(t) = (\epsilon \cos t, \epsilon \sin t), 0 \le t \le 2\pi$.

 $dr = (-\epsilon \sin t, \epsilon \cos t)dt, \ \vec{F}|C = (-\frac{\sin t}{\epsilon}, \frac{\cos t}{\epsilon})$ $\vec{F}|C \cdot dr = dt, \text{ so } \int_{C} \vec{F} \cdot \mathbf{T} ds = \int_{0}^{2\pi} dt = 2\pi.$

Hence $\int_{\mathcal{K}} \vec{F} \cdot \mathbf{T} ds = 2\pi$.