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Math 102 Calculus IT — Final Exam — Solutions

Q-1) Test the following series for convergence:
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Solution: 1) =2 ( n > — 2 as n — 00. The series diverges by ratio test.
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Hence ) a, converges.

Q-2) Find the critical points of f(z,y) = 2723 + y> — 122y + 7, and decide if each critical point
is a local min/max or a saddle point. Find global min/max points, if they exist.

Solution: From f, = 3y* — 12z = 0, we have x = y*/4. Putting this into f, = 812 —12y =0
we get y(27y> —64) = 0; y =0 or y = 4/3.

The critical points are (0,0) and (4/9,4/3).

Second derivative test: f,, = 162z, f,, = 6y, foy = —12, A = 9722y — 144.
A(0,0) < 0, so (0,0) is a saddle point.

A(4/9,4/3) > 0, fr.(4/9,4/3) > 0, so (4/9,4/3) is a local min point.

Since f(0,y) = y* + 7, there are no global min or max.
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Q-3) Evaluate // / cosx dx dz dy.
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Q-4) Find the volume of the region lying inside the sphere z? + y* + 2% = 20 and inside the
cylinder 22 + 3? = 16 but outside the paraboloid z = z? + y2.

Solution: The sphere 22 + 3% + 22 = 20 and the paraboloid z = 22 + 3? intersect when
2422 =20 or z = 0. On the xy-plane the projection of this intersection is the circle 22 4y? = 4.

The sphere 22 + y? + 22 = 20 and the cylinder 22 + 3?> = 16 intersect when z = 2, and the
projection of this intersection on the xy-plane is 22 4+ y? = 16. We can now set up the volume
integral in cylindrical coordinates:
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Q-5) Evaluate the circulation j{ F - T ds of the vector field
c
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2% + y? = 3 and is oriented counterclockwise.

Solution: Let r= (z,y) be a parametrization of the circle and R the region inside. Let
F= (M,N).
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