STUDENT NO:

Q-2) Let S be the cap cut off from the hemisphere $x^2 + y^2 + z^2 = R^2$, $z \ge 0$ by the cylindrical surface $x^2 + y^2 - Ry = 0$, where R > 0. Find the surface area of S.

Solution: We first set $f = x^2 + y^2 + z^2 - R^2$. Then $\frac{|\nabla f|}{|\nabla f \cdot p|} = \frac{R}{z}$.

$$\begin{aligned} \operatorname{Area}(S) &= 2 \int_0^R \int_0^{\sqrt{Ry-y^2}} \frac{R}{z} \, dx dy \\ &= 2R \int_0^R \int_0^{\sqrt{Ry-y^2}} \frac{1}{\sqrt{R^2 - x^2 - y^2}} \, dx dy \\ &= 2R \int_0^{\pi/2} \int_0^{R\sin\theta} \frac{r \, dr d\theta}{\sqrt{R^2 - r^2}} \\ &= 2R \int_0^{\pi/2} \left(-\sqrt{R^2 - r^2} \Big|_0^{R\sin\theta} \right) \, d\theta \\ &= 2R \int_0^{\pi/2} \left(R - R\cos\theta \right) \, d\theta \\ &= 2R^2 \left(\theta - \sin\theta \Big|_0^{\pi/2} \right) \\ &= R^2(\pi - 2). \end{aligned}$$

If you choose to integrate from $\theta = 0$ to $\theta = \pi$ from the beginning, then you should note that $\sqrt{\cos^2 \theta} = |\cos \theta|$ which is $\cos \theta$ when $0 \le \theta \le \pi/2$ and $-\cos \theta$ when $\pi/2 \le \theta \le \pi$.