Q-5) Let $\mathbf{F} = -y \ln(e+z^2) \mathbf{i} + x(x^2+y^2) \sec z \mathbf{j} + (x-y+z) \ln(4+x^4+y^4-z) \mathbf{k}$ be a field defined on the hemisphere S given by $x^2+y^2+z^2=1, z\geq 0$. Calculate explicitly

$$\int \int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ d\sigma.$$

Solution: We use Stokes' theorem which says

$$\int \int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \oint_{C} \mathbf{F} \cdot d\mathbf{r},$$

where C is the boundary of S. In our case C corresponds to z=0, but then $\mathbf{F}=-y\,\mathbf{i}+x(x^2+y^2)\,\mathbf{j}+(x-y)\ln(4+x^4+y^4)\,\mathbf{k}$.

A parametrization for the boundary is $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + 0 \, \mathbf{k}$, for $0 \le t \le 2\pi$. Then $d\mathbf{r}(t) = (-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + 0 \, \mathbf{k}) \, dt$. Putting in the parametrization of the boundary into \mathbf{F} and calculating $\mathbf{F} \cdot d\mathbf{r}$ gives

$$\mathbf{F} \cdot d\mathbf{r} = (-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + something \, \mathbf{k}) \cdot (-\sin t \, \mathbf{i} + \cos t \, \mathbf{j} + 0 \, \mathbf{k}) \, dt = dt.$$

Hence the right hand side integral gives 2π as the final answer.