
Q-4) Let Rα be the region in the xz-plane bounded by the lines z = αx, z = 1 and x = 0,
where α ≥ 1. Let A(α) denote the area of the surface z2 = x2 + y2 lying above Rα.
First, without doing any calculations, find A(1) and lim

α→∞
A(α). Then calculate A(α)

explicitly in terms of α. Check your answer with what you found above.

Solution:

A(1) is the surface area of the cone lying in the first quadrant and below the plane z = 1,
which is π/(2

√
2). When α goes to infinity, the line z = αx becomes the z-axis and then

we have no area, giving lim
α→∞

A(α) = 0.

We now calculate the surface area of the cone over the region Rα. Here f = x2 + y2 − z2,
∇f = (2x, 2y,−2z), |∇f | = 2

√
2z, p = (0, 1, 0).
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