Q-1) Find
$$\lim_{n \to \infty} a_n$$
, where $a_n = \left(1 + \frac{2}{3n}\right)^{4n}$, $n = 1, 2, ...$

Solution:

$$a_n = \left[\left(1 + \frac{2/3}{n} \right)^n \right]^4 \longrightarrow \left[e^{2/3} \right]^4 = e^{8/3} \text{ as } n \to \infty.$$

Or you can consider $\ln a_n = \frac{\ln(1+2/3n)}{1/4n}$ and use L'Hopital's rule as $n \to \infty$.