STUDENT NO:

Q-3) Find an equation for the tangent line of the plane curve $x^2 + xy + y^3 = 11$ at the point (1, 2). Is the point (4, 1) on this tangent line?

Solution: Let $f(x, y) = x^2 + xy + y^3 - 11$. Check that f(1, 2) = 0 so the given point is on the curve. $\nabla f = (2x + y, x + 3y^2)$. $\nabla f(1, 2) = (4, 13)$.

An equation for the tangent line at (1,2) is $(4,13) \cdot (x-1,y-2) = 0$ or equivalently

$$4x + 13y = 30.$$

Check that $4 \cdot 4 + 13 \cdot 1 = 29$ so the point (4, 1) is not on this line.