STUDENT NO:

Q-4) Find and classify all the critical points of the function $f(x, y) = x^3 - 2xy^2 - x + 2y^2$.

Solution:

 $f_x = 3x^2 - 2y^2 - 1 = 0$ $f_y = -4xy + 4y = 4y(1 - x) = 0$

Case 1: y = 0. From $f_x = 0$ we get $x = \pm 1/\sqrt{3}$. The critical points in this case are $(\pm 1/\sqrt{3}, 0)$.

Case 2: $y \neq 0$. Then x = 1 and from $f_x = 0$ we get $y = \pm 1$. The critical points of this case are $(1, \pm 1)$.

 $f_{xx} = 6x, f_{yy} = 4(1-x), f_{xy} = -4y, \Delta = 8[3x(1-x) - 2y^2].$

At $(1/\sqrt{3}, 0)$, $\Delta > 0$, $f_{xx} > 0$, so this is a local minimum point.

At the other critical points $\Delta < 0$, so they are all saddle points.