STUDENT NO:

Q-5) Find the minimum and the maximum values of the function $f(x, y, z) = x^2 - y^3 + 3z^2$ on the sphere $x^2 + y^2 + z^2 = 25$.

Solution: Let $g(x, y, z) = x^2 + y^2 + z^2 - 25$. $\nabla f = \lambda \nabla g$ gives $(2x, -3y^2, 6z) = \lambda(x, y, z)$, or: $x(\lambda - 2) = 0$ $y(\lambda + 3y) = 0$ $z(\lambda - 6) = 0$. Case 1: x = 0. Case 1: y = 0. Then g(0, 0, z) = 0 gives $z = \pm 5$, $f(0, 0, \pm 5) = 75$. Case 1.2: $y \neq 0$. Then $y = -\lambda/3$. Case 1.2.1: z = 0. From g(0, y, 0) = 0 we get $y = \pm 5$. f(0, 5, 0) = -125, f(0, -5, 0) = 125. Case 1.2.2: $z \neq 0$. Then $\lambda = 6$ and hence y = -2. From g(0, -2, z) = 0 we get $z = \pm\sqrt{21}$. $f(0, -2, \pm\sqrt{21}) = 71$. Case 2: $x \neq 0$. Then $\lambda = 2$ and this forces z = 0. Case 2.1: y = 0. Then g(x, 0, 0) = 0 gives $x = \pm\sqrt{5}$. $f(\pm\sqrt{5}, 0, 0) = 25$. Case 2.2: $y \neq 0$. Then $y = -\lambda/3 = -2/3$. g(x, -2/3, 0) = 0 gives $x = \pm\sqrt{25 - 4/9}$. $f(\pm\sqrt{25 - 4/9}, -2/3, 0) = 25 - 4/27$.

Thus we see that the maximal value is 125 and the minimal value is -125.