Q-2) let $\mathbf{F} = \left(\frac{2x}{x^2 + y^4}, \frac{4y^3}{x^2 + y^4}\right)$. Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where C is the circle of radius R centered at the origin. Beware here that the Green's theorem does not hold since \mathbf{F} is not defined at the origin. Observe that in this problem $M_y = N_x$ for the vector field $\mathbf{F} = (\mathbf{M}, \mathbf{N})$. Suppose you have the task of providing such vector fields on demand. How would you construct such vector fields without much effort? How did I invent the above vector field?

Solution: Let R_{ϵ} be the rectangle formed by the lines $x = \pm \epsilon$ and $y = \pm \epsilon$ where $\epsilon > 0$ is small enough that the rectangle R_{ϵ} totally lies inside C. Then Green's theorem applies to the region bounded by C and R_{ϵ} and since $M_y = N_x$, where $\mathbf{F} = (M, N)$, we must have

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{R_{\epsilon}} \mathbf{F} \cdot \mathbf{T} \, ds$$

where R_{ϵ} is positively oriented. But using the obvious parametrization for each side of R_{ϵ} , we find that $\int_{R_{\epsilon}} \mathbf{F} \cdot \mathbf{T} ds = 0$ since on each side we are integrating an odd function on [-1, 1]. This gives

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = 0.$$

To generate such vector fields, start with any function and calculate its gradient. For example the above vector field is the gradient of $\ln(x^2 + y^4)$. If the function is not defined at the origin, then its gradient also fails to be defined there.