NAME:	 	

Date: July 4, 2008, Friday Time: 9:30-11:30 Ali Sinan Sertöz

Math 102 Calculus II – Midterm Exam II – Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Find
$$\lim_{(x,y)\to(0,0)} \frac{x^3y^2}{x^4 + x^2y^2 + y^4}$$
.

Solution:

First observe that

$$\left|\frac{x^3y^2}{x^4 + x^2y^2 + y^4}\right| = \frac{(x^2y^2)|x|}{x^4 + x^2y^2 + y^4} \le \frac{(x^4 + x^2y^2 + y^4)|x|}{x^4 + x^2y^2 + y^4} \le |x|.$$

Then conclude by the sandwich theorem that the required limit is zero.

Q-2) Let $\omega = (x + 2y + 3z)^{15}$ where $x = (u - v)^4 - 16$, $y = \cos^5(u + v) - 2$ and $z = \ln(u^2 + v^2) - \ln 2 + 1$. Find $\frac{\partial \omega}{\partial u}$ at the point (u, v) = (-1, 1).

Solution:

Using chain rule, first write $\omega_u = \omega_x x_u + \omega_y y_u + \omega_z z_u$. Then observe that (x, y, z) = (0, -1, 1) at the point (u, v) = (-1, 1). Putting these values in, you will find $\omega_u = -525$.

Q-3) Find the directional derivative of z in the direction of (5, 12) at the point (x, y) = (-1, 1) if z is defined as a differentiable function of x and y at the point (x, y, z) = (-1, 1, 0) by the equation $x^2y + e^{yz} + 2xz = 2$.

Solution:

By implicit differentiation you first find $z_x = -2$ and $z_y = 1$ at the point (-1, 1, 0). Then the required directional derivative is $(-2, 1) \cdot (5/13, 12/13) = 2/13$.

Q-4) Find and classify all the critical points of $f(x, y) = x^3 + y^2 + x^2y$.

Solution:

 $f_x = 0$ and $f_y = 0$ give (0, 0) and (3, -9/2) as the critical points.

At (0,0) the discriminant is zero. But $f(x,0) = x^3$ takes both positive and negative values in every neighborhood of the origin, so the origin is a saddle point.

At the other critical point the discriminant is negative so it is also a saddle point.

NAME:

STUDENT NO:

Q-5) Find the points on the surface $z^3 + x^2y = 1$ closest to the origin.

It may be necessary to notice that $(108/31)^{2/3} > 22/10$, and that $(16)^{1/3} > 2$.

Solution:

Using the Lagrange multipliers method you will find that the points (0, 0, 1), $(\pm 4^{1/3}/\sqrt{2}, 4^{1/3}/2, 0)$ and $(\pm c/\sqrt{2}, c/2, c/3)$, where $c^3 = 108/31$ are the critical points. A brief comparison shows that the second and third sets of points have a distance larger than 1 from the origin. So the point (0, 0, 1) is the point on the surface closest to the origin.