Q-4) Let R be the region in the plane bounded by $y = x^2$, y = x + 2, and x = 0. Let C be the boundary of R taken counterclockwise.

Let
$$F = (e^x + y^2 - \tan x + 1, \ln(y^3 + 1) + 2xy + x^3 - 7).$$

Calculate the work done by F along C, i.e. calculate $\int_C F \cdot T \, ds$.

Solution: Let F = (M, N).

$$\int_{C} F \cdot T \, ds = \int_{C} M \, dx + N \, dy$$

= $\iint_{R} (N_x - M_y) \, dA$ (Green's Theorem)
= $3 \iint_{R} x^2 \, dA$
= $3 \iint_{0} x^2 \int_{x^2}^{x+2} x^2 \, dy \, dx$
= $\frac{44}{5}$.