NAME:

STUDENT NO:

Q-5) Find the area of the region which lies in the plane 2x + 4y - z = 0 and is bounded by the curve of intersection of this plane by the paraboloid $x^2 + y^2 - z = 9$.

Solution:

We want to calculate $d\sigma$ for the surface F(x, y, z) = 2x + 4y - z = 0.

The projection of the region on the xy-plane is given by $2x + 4y = x^2 + y^2 - 9$, which gives

$$(x-1)^2 + (y-2)^2 = 14.$$

Call this projection R.

$$\begin{aligned} \nabla F &= (2, 4, -1).\\ |\nabla F| &= \sqrt{4 + 16 + 1} = \sqrt{21}.\\ |\nabla F \cdot k| &= 1\\ \text{Hence } d\sigma &= \frac{|\nabla F|}{|\nabla F \cdot k|} \ dA &= \sqrt{21} \ dA. \end{aligned}$$

Finally

Area =
$$\iint_R d\sigma$$

= $\sqrt{21} \iint_R dA$
= $\sqrt{21} \cdot (\text{Area of } R)$
= $\sqrt{21} \cdot 14\pi.$