Q-3) Let S be the surface in \mathbb{R}^3 given by f(x, y, z) = 0 where $f(x, y, z) = 1 + x^2 + y^4 - z$. Let $p_0 = (1/2, y_0, z_0)$ be a point on the surface such that the tangent plane to the surface S at p_0 passes through the origin. Find z_0 .

Solution:

$$abla f(x, y, z) = (2x, 4y^3, -1)$$

 $abla f(p_0) = (1, 4y_0^3, -1).$

Equation of the tangent plane to S at p_0 is

$$(1, 4y_0^3, -1) \cdot (x - \frac{1}{2}, y - y_0, z - z_0) = 0$$

This passes through the origin so (x, y, z) = (0, 0, 0) satisfies this equation giving

$$-\frac{1}{2} - 4y_0^4 + z_0 = 0. \tag{1}$$

Since $p_o = (1/2, y_0, z) =_0$ is on the surface, we also have

$$\frac{5}{4} + y_0^4 - z_0 = 0. (2)$$

Adding equations (??) and (??) we get

$$y_0^4 = \frac{1}{4}.$$

Putting this value into equation (??) or (??) we get

$$z_0 = \frac{3}{2}.$$