Q-3) Consider the vector field $\vec{F} = \left(\frac{1}{x+y^2+z^3}, \frac{2y}{x+y^2+z^3} + 1, \frac{3z^2}{x+y^2+z^3} + 2z\right).$ Calculate the work done by \vec{F} along the path $C = C_1 + C_2 + C_3$.

 C_1 is along the semicircle in the *yz*-plane with center at the origin and radius 2. C_1 follows this semicircle from (0, -2, 0) towards (0, 2, 0) with $z \ge 0$.

 C_2 goes from (0, 2, 0) towards the point (2, 1, 0) along the ellipse $\frac{3x^2}{16} + \frac{y^2}{4} = 1$ in the *xy*-plane.

 C_3 goes from the point (2,1,0) towards the point (2,1,1) along a straight line.

Solution:

For the problem to be *reasonable*, \vec{F} must be conservative! In fact we find that

$$\vec{F} = \nabla f$$
, where $f = \ln(x + y^2 + z^3) + y + z^2$,

and

Work along
$$C = \int_C \vec{F} \cdot dr = f(2, 1, 1) - f(0, -2, 0) = (\ln 4 + 2) - (\ln 4 - 2) = 4.$$