Q-1) Calculate
$$\lim_{n \to \infty} a_n$$
, where $a_n = \frac{(n!)^2}{(n^n)(6 \cdot 13 \cdot 20 \cdots (7n-1))}$.

Solution: Observe that $\frac{k}{7k-1} < \frac{1}{6}$ for $k \ge 1$, and $\frac{k}{n} \le 1$ for $1 \le k \le n$. Then $a_n = \left(\frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n}\right) \left(\frac{1}{6} \cdot \frac{2}{7} \cdots \frac{n}{7n-1}\right) < (1) \left(\frac{1}{6}\right)^n.$

This shows that $\lim_{n \to \infty} a_n = 0.$

Another solution is as follows.

Consider the series $\sum_{n=1}^{\infty} a_n$. Use the ratio test: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{7n+6} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{7e} < 1,$

so the series converges. This means in particular that the general term goes to zero. Hence $\lim_{n\to\infty}a_n=0$