STUDENT NO:

Q-2 Find the minimum and maximum values of $f(x, y) = x^2 + x + y^2 + y$ on the closed circular disk centered at the origin with radius $\sqrt{2}$.

Solution: Critical points are found by solving simultaneously $f_x = 2x + 1 = 0$ and $f_y = 2y + 1 = 0$. The only critical point is (-1/2, -1/2) and is in the domain.

We parametrize the boundary by $x(\theta) = \sqrt{2} \cos \theta$ and $y(\theta) = \sqrt{2} \sin \theta$ where $0 \le \theta \le 2\pi$. Then we look for the critical points of

$$F(\theta) = f(x(\theta), y(\theta)) = 2 + \sqrt{2}(\cos \theta + \sin \theta),$$

where $\theta \in [0, 2\pi]$. Here $F'(\theta) = \sqrt{2}(-\cos \theta + \sin \theta) = 0$ for $\theta = \pi/4$ and $\theta = 5\pi/4$ in the range of θ . These give us the points (1, 1) and (-1, -1) on the boundary. We finally calculate the values of f at these critical values.

f(-1/2, -1/2) = -1/2, f(1, 1) = 4,f(-1, -1) = 0.

We conclude that the minimum value of f is -1/2 and the maximum value is 4.

NAME: