NAME:....

DEPARTMENT:.....

Math 102 Summer 2013 – QUIZ # 1 – Section 001

Let
$$a_n = \frac{\cos^2(n)}{2^n}$$
 for $n \ge 1$.

Determine whether the sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit. Moreover determine if the series $\sum_{n=1}^{\infty} a_n$ diverges or converges.

Solution:

We have $0 \le a_n \le \frac{1}{2^n}$. Since $\lim_{n \to \infty} \frac{1}{2^n} = 0$, by the squeeze theorem, we laso have $\lim_{n \to \infty} a_n = 0$.

Moreover since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges as a geometric series, the above inequality shows that $\sum_{n=1}^{\infty} a_n$ converges by the comparison test.