Date: July 18, 2013, Thursday

Instructor: Ali Sinan Sertöz

NA	AME:	 	 	
STUDENT	NO:	 	 	

Assistant: Recep Özkan

DEPARTMENT:.....

Math 102 Summer 2013 – QUIZ # 11 – Section 001

Evaluate
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
 where

$$\mathbf{F}(x,y) = (1+xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$$

and C is the curve parametrized as follows:

$$\mathbf{r}(t) = \cos(t)\mathbf{i} + 2\sin(t)\mathbf{j}, \ 0 \le t \le \frac{\pi}{2}.$$

Solution:

Let $\mathbf{F}(x,y) = (1+xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j} = (P(x,y),Q(x,y)).$

Since $P_y = Q_x$ everywhere, the vector field $\mathbf{F}(x, y)$ is conservative on the plane. This means that the path integral of $\mathbf{F}(x, y)$ depends only on the end points. Since the given (blue) path starts at A and ends at B, we can choose any other path with these end points and the integral will have the same value.

We choose the path from A to O along the x-axis and continue along y-axis to B.

Let C_1 be parametrized by $\mathbf{r_1}(t) = (1 - t, 0), t \in [0, 1], d\mathbf{r_1} = (-dt, 0)$. (from A to O) Let C_2 be parametrized by $\mathbf{r_2}(t) = (0, t), t \in [0, 2], d\mathbf{r_2} = (0, dt)$. (from O to B)

Note that **F** evaluated along $\mathbf{r_1}(t)$ is $(1, (1-t)^2)$ and **F** evaluated along $\mathbf{r_2}(t)$ is (1, 0).

Next we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r}_{1} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r}_{2}$$

$$= \int_{0}^{1} (1, (1-t)^{2}) \cdot (-dt, 0) + \int_{0}^{2} (1, 0) \cdot (0, dt)$$

$$= \int_{0}^{1} (-dt) + \int_{0}^{2} 0 dt$$

$$= -1.$$