Real Dography	Quiz # 1 Math 102-001 Calculus 2 June 2016, Thursday Instructor: Ali Sinan Sertöz	
Bilkent University		
	Your Name:	
Student ID:	Your Department:	

Q-1) Use the integral test to check if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges or diverges.

Show your work in detail. Correct answers without justification are never graded.

Answer:

Let $f(x) = \frac{\ln x}{x^2}$ be defined for $x \ge 3$. Then $f'(x) = \frac{1 - 2\ln x}{x^3}$ and thus f'(x) < 0 for $x \ge 3$. Since we also have f(x) > 0 on this interval, we can apply the integral test.

$$\int_{3}^{\infty} \frac{\ln x}{x^{2}} \, dx = -\left(\frac{\ln x}{x}\Big|_{3}^{\infty}\right) + \int_{3}^{\infty} \frac{dx}{x^{2}} = \frac{\ln 3}{3} - \left(\frac{1}{x}\Big|_{3}^{\infty}\right) = \frac{\ln 3}{3} + \frac{1}{3} < \infty,$$

where we used integration by parts with $u = \ln x$ and $dv = \frac{dx}{x^2}$ for the first integral. Since the value of this integral is finite, the given series converges by the integral test.