

Quiz # 1 Math 102-002 Calculus 3 June 2016, Friday

Instructor: Ali Sinan Sertöz

Bilkent University

	Your Name:
Student ID:	Your Department:
	$\sum_{i=1}^{\infty}$ 1

Q-1) Use the integral test to check if the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges or diverges.

Show your work in detail. Correct answers without justification are never graded.

Answer:

Let $f(x)=\frac{1}{x(\ln x)^2}$ be defined for $x\geq 2$. Then $f'(x)=-\frac{\ln x+2}{x^2(\ln x)^3}$ and thus f'(x)<0 for $x\geq 2$. Since we also have f(x)>0 on this interval, we can apply the integral test.

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 2}^{\infty} \frac{du}{u^{2}} = -\left(\frac{1}{u}\Big|_{\ln 2}^{\infty}\right) = \frac{1}{\ln 2} < \infty,$$

where we used the substitution $u = \ln x$ for the first integral. Since the value of this integral is finite, the given series converges by the integral test.