

Quiz # 6 Math 102-**002** Calculus 15 July 2016, Friday

Instructor: Ali Sinan Sertöz Solution Kev

Bilkent University

	Your Name:
Student ID:	Your Department:

- **Q-1**) Let $f(x,y) = x^2 + 4xy + 5y^2 4x 2y$.
 - (i) Find the critical points of f.
 - (ii) Determine the nature of the critical points.
 - (iii) Find the global minimum and maximum values of f if they exist.

Show your work in detail. Correct answers without justification are never graded.

Answer:

To find the critical points we must solve simultaneously the equations

$$f_x = 2x + 4y - 4 = 0$$
 and $f_y = 4x + 10y - 2 = 0$.

Thus the only critical point is the sole solution to the above linear system which is (x, y) = (8, -3).

To determine the nature of this critical point we need the second derivative test. For this we need

$$f_{xx} = 2$$
, $f_{xy} = 4$, $f_{yy} = 10$, $\Delta = f_{xx}f_{yy} - f_{xy}^2 = 4$.

Since $\Delta > 0$, this critical point is a local minimum.

We can write $f(x,y)=(x+2y)^2+y^2-2(2x+y)$ and observe that as |x| and |y| increase, the values of the function go to $+\infty$. Hence there must be a global minimum which must occur at a critical point. Since we have only one critical point for this function, the global minimum whose existence we now know must occur there.

Hence f(8, -3) = -13 is the global minimum value of this function.

Note that the existence of a single local minimum point does not guarantee that there is a global minimum. Check for example that the polynomial $f(x,y) = x^2 + y^2(1+x)^3$ has only one critical point at (0,0) which is a local minimum but is not a global minimum. In fact $\lim_{t\to\infty} f(-2,t) = -\infty$.