References	Quiz # 7 Math 102- 001 Calculus 21 July 2016, Thursday Instructor: Ali Sinan Sertöz Solution Key	
Bilkent University		
	Your Name:	
Student ID:	Your Department:	

Q-1) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$.

Show your work in detail. Correct answers without justification are never graded.

This is going to count as an attendance quiz, so everyone who handed in a paper receives full grade.

Answer:

This is Example 4 on page 1025 of the course textbook.

The solid lies above the disk D whose boundary circle has equation $x^2 + y^2 = 2x$ which in polar coordinates is given by

$$D = \{ (r, \theta) \mid -\pi/2 \le \theta \le \pi/2, \ 0 \le r \le 2\cos\theta \}.$$

Hence the volume V can be calculated as follows.

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{3} dr d\theta$$

= $\int_{-\pi/2}^{\pi/2} \left(\frac{r^{4}}{4} \Big|_{0}^{2\cos\theta} \right) = 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$
= $2 \int_{0}^{\pi/2} \left[1 + 2\cos 2\theta + \frac{1}{2}(1 + \cos 4\theta) \right] d\theta$
= $2 \left(\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta \Big|_{0}^{\pi/2} \right)$
= $\frac{3\pi}{2}.$