Your Deptartment: In each , put a ✓ in exactly one ♦ and exactly one □, and fill in the where necessary, to make the sentences into true statements. No explanation is required. There are correct answers and there are correcter answers. - The series $\sum_{n=1}^{\infty} \frac{2^n}{3^n-1}$ converges \diamondsuit diverges. This can best be seen by using - $\sqcap nTT$ - \square AST - \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$ - \square LCT with $\sum r^n$ where $r = \square$ LCT with $\sum \frac{1}{r^n}$ where p = -1 \sqcap RT - The series $\sum_{n=0}^{\infty} \frac{1}{n} \sin\left(\frac{\pi}{n}\right)$ converges \diamondsuit diverges. This can best be seen by using - \square nTT - \Box IT - \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{r^n}$ where $p = \square$ - \square LCT with $\sum r^n$ where $r = \square$ - $^{\circ}$ The series $\sum_{n=0}^{\infty} (2017^{1/n} 1)$ \diamond converges $^{\circ}$ diverges. This can best be seen by using - $\square nTT$ - \square DCT with $\sum r^n$ where $r = \bigcap$ DCT with $\sum \frac{1}{n^p}$ where $p = \bigcap$ - \square LCT with $\sum r^n$ where $r = \square$ - The series $\sum_{n=0}^{\infty} \frac{(2n)!}{5^n n! (n+1)!}$ \diamond converges \diamond diverges. This can best be seen by using - $\square nTT$ - □ IT - □ AST - \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$ - \square LCT with $\sum r^n$ where $r = \square$ - The series $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ \diamond converges \diamond diverges. This can best be seen by using - TT - □ AST - \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$ Name: - \square LCT with $\sum r^n$ where $r = \square$ \square LCT with $\sum \frac{1}{n^p}$ where $p = \square$ - The series $\sum_{n=0}^{\infty} \frac{1}{2017^{\ln n}}$ converges \diamondsuit diverges. This can best be seen by using - \square nTT - □ IT - D AST - $\square nRT$ - \square DCT with $\sum r^n$ where $r = \bigcap$ DCT with $\sum \frac{1}{n^p}$ where $p = \bigcap$ - \square LCT with $\sum r^n$ where $r = \square$ - The series $\sum_{n=1}^{\infty} (-1)^n 2017^{1/n}$ \Leftrightarrow converges \bullet diverges. This can best be seen by using - PTT - □ IT - □ AST - \square nRT - \square DCT with $\sum r^n$ where $r = \square$ DCT with $\sum \frac{1}{r^n}$ where $p = \square$ - \square LCT with $\sum r^n$ where $r = \square$ LCT with $\sum \frac{1}{r^n}$ where $p = \square$ - The series $\sum_{n=1}^{\infty} \frac{n+4}{n(n+1)(n+2)}$ \diamond converges \diamond diverges. This can best be seen by - \square nTT - □ IT - □ AST - □ RT - \square nRT - \square DCT with $\sum r^n$ where $r = \square$ - \square LCT with $\sum r^n$ where $r = \square$