Your Deptartment:

In each , put a ✓ in exactly one ♦ and exactly one □, and fill in the where necessary, to make the sentences into true statements. No explanation is required. There are correct answers and there are correcter answers.

- The series $\sum_{n=1}^{\infty} \frac{2^n}{3^n-1}$ converges \diamondsuit diverges. This can best be seen by using
 - $\sqcap nTT$
- \square AST

- \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$
- \square LCT with $\sum r^n$ where $r = \square$ LCT with $\sum \frac{1}{r^n}$ where p = -1

 \sqcap RT

- The series $\sum_{n=0}^{\infty} \frac{1}{n} \sin\left(\frac{\pi}{n}\right)$ converges \diamondsuit diverges. This can best be seen by using
 - \square nTT
- \Box IT

- \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{r^n}$ where $p = \square$
- \square LCT with $\sum r^n$ where $r = \square$
- $^{\circ}$ The series $\sum_{n=0}^{\infty} (2017^{1/n} 1)$ \diamond converges $^{\circ}$ diverges. This can best be seen by using
 - $\square nTT$

- \square DCT with $\sum r^n$ where $r = \bigcap$ DCT with $\sum \frac{1}{n^p}$ where $p = \bigcap$
- \square LCT with $\sum r^n$ where $r = \square$
- The series $\sum_{n=0}^{\infty} \frac{(2n)!}{5^n n! (n+1)!}$ \diamond converges \diamond diverges. This can best be seen by using
 - $\square nTT$
- □ IT
- □ AST

- \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$
- \square LCT with $\sum r^n$ where $r = \square$

- The series $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ \diamond converges \diamond diverges. This can best be seen by using
- TT
- □ AST

- \square DCT with $\sum r^n$ where $r = \square$ \square DCT with $\sum \frac{1}{n^p}$ where $p = \square$

Name:

- \square LCT with $\sum r^n$ where $r = \square$ \square LCT with $\sum \frac{1}{n^p}$ where $p = \square$
- The series $\sum_{n=0}^{\infty} \frac{1}{2017^{\ln n}}$ converges \diamondsuit diverges. This can best be seen by using
 - \square nTT
- □ IT
- D AST
- $\square nRT$

- \square DCT with $\sum r^n$ where $r = \bigcap$ DCT with $\sum \frac{1}{n^p}$ where $p = \bigcap$
- \square LCT with $\sum r^n$ where $r = \square$
- The series $\sum_{n=1}^{\infty} (-1)^n 2017^{1/n}$ \Leftrightarrow converges \bullet diverges. This can best be seen by using
 - PTT
- □ IT
- □ AST
- \square nRT
- \square DCT with $\sum r^n$ where $r = \square$ DCT with $\sum \frac{1}{r^n}$ where $p = \square$
- \square LCT with $\sum r^n$ where $r = \square$ LCT with $\sum \frac{1}{r^n}$ where $p = \square$
- The series $\sum_{n=1}^{\infty} \frac{n+4}{n(n+1)(n+2)}$ \diamond converges \diamond diverges. This can best be seen by
 - \square nTT
- □ IT
- □ AST
- □ RT
- \square nRT

- \square DCT with $\sum r^n$ where $r = \square$
- \square LCT with $\sum r^n$ where $r = \square$