(6+5+5+5+5 points] 1

1. In each of the following, a double integral // f(z,y) dA is expressed as an iterated integral in polar

D
coordinates. In each part, draw a picture of the region D, and clearly label the curves bounding it with
their equations both in Cartesian and polar coordinates.
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[10+15 points] 2
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2a. Evaluate the iterated integral / / e /Tdxdy. [You can use the fact that / e ?dr=1.]
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2b. Evaluate the double integral // (z® + y*)dA where R is the region between the unit circle and

the regular hexagon with center at the origin shown in the ﬁgure
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[10+10+5 points] 3

3. Let D be the region in space bounded by the parabolic cylinder
z =y, the plane 2 +y + 2 = 2, the yz-plane, and the zy-plane.

e Choose two of the following rectangular boxes by putting a X
in the O in front of them, and then

e choose one of the orders of integration in each of the selected
boxes by putting a X in the 0O in front of them.
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Express the volume V of the region D in terms of iterated integrals
in each of your selected orders of integration (a) and (b).
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——%
T‘~;v\/: J J [Q'X’Z “\/;) dz dx = JA \(Q'X—J;)% ey l/d "
i 0

l . \ Il
:J%(Z/Y/\/;)Jx’ g (lir\,?/x +%}%~2x"&f>‘<*>‘ ) dx
Q

o
I 3 5 £0




B

((5+5)+(5+5+5) points] 4 |

4a. In ©0-@, if there exists a sequence {a,}3%, satisfying the given conditions, write its n*" term in
the box; and if no such sequence exists, write Does Not ExisT in the box. No explanation is required.

. Op41 " .
Q lim 2™ =1 and lim a, does not exist.

n—oo (U, n—00

an = N

v an—l—l v )

@ Ilim = —1 and lim a, exists.
n—00 (I, n— oo
)"
ap = | ——
h

4b. Let ¢ be a real number and consider the sequence {a,}22, with a; = ¢ and satisfying the recursion
relation a,.; = a, + a for all n > 1.

® Show that if the sequence converges, then lim a, = 0.
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@ Fill in the boxes so that the sentence below becomes a true statement.
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which is not an integer conwerges or &ive@cs

@ Prove the statement in @.
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xr =rcost r = psin ¢ r = psing cosl
y = rsinf 8—=2 Yy = p sing sinf
E—=F z = pCoso = p COS
dA = dxdy = rdrdf
dV =drdydz = rdzdrdf = p*sinddpdep df




