1. In each of the following, a double integral $\iint_D f(x,y) dA$ is expressed as an iterated integral in polar coordinates. In each part, draw a picture of the region D, and clearly label the curves bounding it with their equations both in Cartesian and polar coordinates.

a.
$$\int_0^{\pi/4} \int_0^{\sec \theta} f(r\cos \theta, r\sin \theta) r \, dr \, d\theta$$

c.
$$\int_0^{\pi/4} \int_0^{2\sin\theta} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

e.
$$\int_0^1 \int_{\arccos r}^{\pi} f(r\cos\theta, r\sin\theta) \, r \, d\theta \, dr$$

d.
$$\int_0^{\pi/3} \int_0^2 f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

2a. Evaluate the iterated integral $\int_0^\infty \int_0^{1/\sqrt{y}} e^{-1/x} dx dy$. [You can use the fact that $\int_0^\infty e^{-x} dx = 1$.]

$$\int_{0}^{\infty} \int_{0}^{1/\sqrt{y}} e^{-1/x} dx dy = \iint_{R} e^{-1/x} dA = \iint_{0}^{\infty} \int_{0}^{1/\sqrt{x^{2}}} dx dx$$

$$= \int_{0}^{\infty} \left[e^{-1/x} y \right]_{y=0}^{y=1/\sqrt{x^{2}}} dx = \int_{0}^{\infty} e^{-1/x} dx$$

$$= \int_{0}^{\infty} e^{-1/x} y \int_{y=0}^{y=1/\sqrt{x^{2}}} dx = \int_{0}^{\infty} e^{-1/x} dx$$

$$= \int_{0}^{\infty} e^{-1/x} (-du) = 1$$

$$= \int_{0}^{\infty} e^{-1/x} (-du) = 1$$

2b. Evaluate the double integral
$$\iint_R (x^2 + y^2) dA$$
 where R is the region between the unit circle and the regular hexagon with center at the origin shown in the figure.

$$\iint_R (x^2 + y^2) dA = 12 \iint_R (y^2 + y^2) dA = 12 \iint_R (y^2 + y^2) dA = 12 \iint_R (x^2 + y^2) dA = 1$$

3. Let *D* be the region in space bounded by the parabolic cylinder $x = y^2$, the plane x + y + z = 2, the yz-plane, and the xy-plane.

• Choose <u>two</u> of the following rectangular boxes by putting a X in the \square in front of them, and then

• choose <u>one</u> of the orders of integration in each of the selected boxes by putting a X in the \square in front of them.

Express the volume V of the region D in terms of iterated integrals in each of your selected orders of integration (a) and (b).

c. Find the volume V. $\begin{array}{l}
2 - x - \sqrt{x} \\
\end{aligned}$ $V = \int_{0}^{1} \int_{0}^{2 - x - \sqrt{x}} (2 - x - 2 - \sqrt{x}) dz dx = \int_{0}^{1} \left[(2 - x - \sqrt{x})z - \frac{1}{2}z^{2} \right] dx \\
= \int_{0}^{1} \frac{1}{2} (2 - x - \sqrt{x})^{2} dx = \int_{0}^{1} \left(2 + \frac{1}{2} x^{2} + \frac{1}{2} x - 2x - 2\sqrt{x} + \frac{3}{2}x^{2} \right) dx \\
= 2 + \frac{1}{2} + \frac{1}{4} - 1 - \frac{4}{3} + \frac{2}{5} = \frac{29}{60}$

4a. In **0-2**, if there exists a sequence $\{a_n\}_{n=1}^{\infty}$ satisfying the given conditions, write its n^{th} term in the box; and if no such sequence exists, write Does Not Exist in the box. No explanation is required.

$$\mathbf{0} \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \text{ and } \lim_{n \to \infty} a_n \text{ does not exist.}$$

$$a_n = \bigvee$$

2
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = -1$$
 and $\lim_{n \to \infty} a_n$ exists.

$$a_n = \frac{(-1)^n}{h}$$

4b. Let c be a real number, and consider the sequence $\{a_n\}_{n=1}^{\infty}$ with $a_1 = c$ and satisfying the recursion relation $a_{n+1} = a_n + a_n^2$ for all $n \ge 1$.

① Show that if the sequence converges, then $\lim_{n\to\infty} a_n = 0$.

Suppose
$$L = \lim_{n \to \infty} a_n$$
. Then:
 $a_{n+1} = a_n + a_n^2$ for all $n \ge 1 \implies L = L + L^2 \implies L^2 = 0 \implies L = 0$

② Fill in the boxes so that the sentence below becomes a true statement.

If
$$c = \frac{1}{2}$$
, then the sequence Liverges.

Write here a real number.

Write here either

Write **here** a real number which is <u>not</u> an integer

Write here either converges or diverges

3 Prove the statement in 2.

Hence, by induction,
$$a_n \ge \frac{1}{2}$$
, then $a_{n+1} = a_n + a_n^2 \ge \frac{1}{2} + 0 = \frac{1}{2}$.

Hence, by induction, $a_n \ge \frac{1}{2}$ for all $n \ge 1$.

If follows that $\lim_{n \to \infty} x_n \ge \frac{1}{2}$ if the $\lim_{n \to \infty} x_n + x_n \ge 1$.

Contradicting Part 1. Therefore the limit does not exist.

$$x = r \cos \theta$$
 $r = \rho \sin \phi$ $x = \rho \sin \phi \cos \theta$
 $y = r \sin \theta$ $\theta = \theta$ $y = \rho \sin \phi \sin \theta$
 $z = z$ $z = \rho \cos \phi$ $z = \rho \cos \phi$

$$dA = dx \, dy = r \, dr \, d\theta$$

$$dV = dx \, dy \, dz = r \, dz \, dr \, d\theta = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$