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(i) Find all = for which this series converges absolutely.

(ii) Show that f(x) satisfies the differential equation
y// + y — 0

(iii) A theorem on differential equations says that if g(z) is a solution of the above differential
equation, then
g(x) = Acosx + Bsinz,

where A and B are some constants. Show that f(z) = sin x.

Show your work in detail. Correct answers without detailed explanation do not get any credit.

Grading: 44+3+3=10 points.
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L2+l
(i) Leta, = (—1)”m. Then using the ratio test for absolute convergence we find
n !
An+1 |l’2‘
= — 0asn — oo, forall x.
an (2n+2)(2n + 3)

This shows that the series converges absolutely for all values of .

(i) Taking successive derivatives we have
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We see that f”(z) + f(z) = 0 as claimed.
(iii) By the quoted theorem we must have
f(z) = Acosz + Bsinx.

Calculating f(0) and f’(0) first from the power series expansion and then from the above form we
see that A = 0 and B = 1. Hence f(x) = sin .



