

Quiz # 7 Math 102-Section 09 5 May 2023, Friday, Moodle Quiz Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let z=f(x,y) where f is a differentiable function. We restrict this function to the curve with parametric equations $(1+3t+t^2,t^4-1)$, $t\in\mathbb{R}$. We also know that:

$$f_x(15,11) = 1,$$
 $f_x(11,15) = 3,$ $f_y(15,11) = 7$
 $f_y(11,15) = 11,$ $f_y(19,80) = 13,$ $f_y(80,11) = 17$
 $f_x(11,80) = 10,$ $f_x(80,11) = -1,$ $f_x(19,80) = -7$
 $f_y(11,80) = -6,$ $f_x(15,80) = 11,$ $f_y(15,80) = 16$

Calculate
$$\left. \frac{\partial f}{\partial t} \right|_{t=2}$$
 and $\left. \frac{\partial f}{\partial t} \right|_{t=3}$.

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 5+5=10 points.

Solution:

We first calculate the points in the plane corresponding to t = 2 and t = 3.

$$(x(2), y(2)) = (11, 15), (x(3), y(3)) = (19, 80).$$

Next we calculate the required derivatives using the chain rule.

$$\frac{\partial f}{\partial t}\Big|_{t=2} = \frac{\partial f}{\partial x}\Big|_{(x,y)=(11,15)} \frac{\partial x}{\partial t}\Big|_{t=2} + \frac{\partial f}{\partial y}\Big|_{(x,y)=(11,15)} \frac{\partial y}{\partial t}\Big|_{t=2}
= f_x(11,15) (3+2t)\Big|_{t=2} + f_y(11,15) (4t^3)\Big|_{t=2}
= (3)(7) + (11)(32)
= 373.$$

Similarly we have

$$\frac{\partial f}{\partial t}\Big|_{t=3} = \frac{\partial f}{\partial x}\Big|_{(x,y)=(19,80)} \frac{\partial x}{\partial t}\Big|_{t=3} + \frac{\partial f}{\partial y}\Big|_{(x,y)=(19,80)} \frac{\partial y}{\partial t}\Big|_{t=3}
= f_x(19,80) (3+2t)\Big|_{t=3} + f_y(19,80) (4t^3)\Big|_{t=3}
= (-7)(9) + (13)(108)
= 1341.$$