

Quiz # 01 Math 102 Section 11 Calculus II 4 February 2025, Tuesday Instructor: Ali Sinan Sertöz Solution Key

Bilkent University

**Q-1**) Find the limit of the sequence  $(a_n)_{n=1}^{\infty}$  given recursively as

$$a_1 = 1$$
, and  $a_n = \frac{n^2 - 1}{n^2} a_{n-1}$  for  $n > 1$ .

Find  $\lim_{n\to\infty} a_n$  if it exists. If it does not exist, explain why. Hint: You may start by proving by induction that  $a_n = \frac{n+1}{2n}$  for  $n \ge 1$ . Grading: 10 points

Solution: Grader: emre.baran@ug.bilkent.edu.tr

We follow the hint and claim that  $a_n = \frac{n+1}{2n}$  for  $n \ge 1$ . We prove this by induction.

When n = 1, the claim says that  $a_1 = 1$  which is the given definition so the claim holds for n = 1.

Now we assume that  $a_n = \frac{n+1}{2n}$ , for some  $n \ge 1$  and check the claim for n+1.

$$a_{n+1} = \frac{(n+1)^2 - 1}{(n+1)^2} a_n$$
 by the given definition of the sequence  
$$= \frac{(n+1)^2 - 1}{(n+1)^2} \frac{n+1}{2n}$$
 by the induction hypothesis  
$$= \frac{(n+1) + 1}{2(n+1)}$$
 after simplification

which shows that the claim holds for n + 1 if it holds for n.

This completes the proof by induction. Now we can calculate the limit.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n+1}{2n}$$
$$= \frac{1}{2}.$$

Thus we found that the required limit is  $\frac{1}{2}$ .