
Oct 20, 2003

MATH 113 HOMEWORK 2
SOLUTION MANUAL

1) Find a formula for each of the following expressions and prove your formula using
induction.
i) 12 + 22 + · · ·+ n2.
Solution. We have (k + 1)3 − k3 = 3k2 + 3k + 1. Writing this for k = 1, 2, 3 · · · , n and

23 − 13 = 3 · 12 + 3 · 1 + 1

33 − 23 = 3 · 22 + 3 · 2 + 1

43 − 33 = 3 · 32 + 3 · 3 + 1

· · · · · ·
(n + 1)3 − n3 = 3 · n2 + 3 · n + 1

and adding we get

(n + 1)3 − 1 = 3
n∑

k=1

k2 + 3
n∑

k=1

+n

and solving this for
∑n

k=1 k2 we obtain

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
(∗).

Now we prove this by induction for all integers n ≥ 1.
For n = 1, both sides are equal to 1. Assume the formula is true for some integer n ≥ 1, i.e.
assume that 12 + 22 + · · ·n2 = n(n+1)(2n+1)

6
. Add (n + 1)2 to both sides. We get

12 + 22 + · · ·+ n2 + (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)[n(2n + 1) + 6(n + 1)]

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)[(n + 1) + 1][2(n + 1) + 1]

6

So the formula is true for n + 1. Thus by induction the formula (*) is true for all integers
n ≥ 1.
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ii) 12 − 22 + 32 − 42 + · · ·+ (−1)n−1n2.
Solution. Let f(n) = 1− 22 + 32 − · · ·+ (−1)n−1n2. We try a few values of n. We see that

f(1) = 1, f(2) = −3, f(3) = 6, f(4) = −10, f(5) = 15,

and these are numerically same as

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, 1 + 2 + 3 + 4 + 5 = 15

but signs alternate. So we guess that

f(n) = 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1n(n + 1)

2
for all n ≥ 1 (∗∗).

Now we prove (**) by induction.

For n = 1, f(1) = 1 and (−1)n−1 n(n+1)
2

= 1, so the formula is true for n = 1. Now assume
(**) is true for some integer n ≥ 1, i.e. assume

f(n) = 12 − 22 + · · ·+ (−1)n−1n2 = (−1)n−1n(n + 1)

2
.

Add (−1)n(n + 1)2 to both sides

f(n + 1) = 12 − 22 + · · ·+ (−1)n−1n2 + (−1)n(n + 1)2 = (−1)n−1n(n + 1)

2
+ (−1)n(n + 1)2

= (−1)n−1(n + 1)
(n

2
− (n + 1)

)

= (−1)n−1(n + 1)
−n− 2

2

= (−1)n (n + 1)(n + 2)

2
.

So the formula is true for n + 1. Thus by mathematical induction the formula (**) is true
for all integers n ≥ 1.

iii)

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
.

Solution. Let

g(n) =

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
for n ≥ 2.

Factoring each parenthesis

g(n) =

(
1− 1

2

) (
1 +

1

2

)(
1− 1

3

)(
1 +

1

3

)(
1− 1

4

)(
1 +

1

4

)
· · ·

(
1− 1

n

)(
1 +

1

n

)

=
1

2
· 3

2
· 2

3
· 4

3
· 3

4
· 5

4
· · · n− 1

n
· n + 1

n

=
n + 1

2n

So we claim that

g(n) =

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
=

n + 1

2n
, for n ≥ 2 (∗ ∗ ∗)
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For n = 2, 1− 1
22 = 3

4
and n+1

2n
= 3

4
, so the claim is true for n = 2. Assume the formula (***)

is true for some integer n ≥ 2, i.e.,

g(n) =

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
=

n + 1

2n
,

multiplying both sides by 1− 1
(n+1)2

,

g(n + 1) = g(n)

(
1− 1

(n + 1)2

)
=

n + 1

2n

(
1− 1

(n + 1)2

)

=
n + 1

2n
· n2 + 2n

(n + 1)2
=

n + 2

2(n + 1)
.

So the formula (***) is true for n + 1. Thus by induction the formula (***) is true for all
integers n ≥ 2.

2) Solve Exercises 6 and 7 on page 64.
Solution of Exercise 6. Let a and b be integers such that a < b, and f be a nonnegative
real valued function defined on [a, b]. Let S be the set

S = {(x, y) : a ≤ x ≤ b, 0 < y ≤ f(x)}.

We are asked to show that the number of lattice points in S is given by

b∑
n=a

[f(n)].

(Here [x] denotes the greatest integer ≤ x.)
Note that S does not contain the part of the x-axis in the ordinate set of f .
Given any positive real number y, [y] is the number of integers k such that 0 < k ≤ y. If
y = 0, then, there is no integer k such that 0 < k ≤ y and [y]=0. So if y ≥ 0, then [y] is the
number of integers k such that 0 < k ≤ y. Now if n is an integer, taking y = f(n), we have
that [f(n)] is the number of integers k such that 0 < k ≤ f(n), i.e. the number of lattice
points on the half open segment {(x, y) : x = n, 0 < y ≤ f(n)}. As n changes through the
integer values in the interval [a, b] we get all the lattice points in the set S.

Solution of Exercise 7. Let a and b be positive integers with no common factors. We are
asked to show that

b−1∑
n=1

[na

b

]
=

(a− 1)(b− 1)

2
.

For b = 1, define the sum on the left hand side as 0. So assume that b ≥ 2.
a) Consider the set

S = {(x, y) : 1 ≤ x ≤ b− 1, 0 < y ≤ a

b
x}

This is the set S in the previous problem with f(x) = a
b
x. According to the previous problem

the number of lattice points in S is
∑b−1

n=1

[
a
b
n
]
.

Now let us count these lattice points some other way. Consider the line segment y = a
b
x, for
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1 ≤ x ≤ b−1. On this line segment there are no lattice points. For if (x, y) is a point on this
segment, then it is a lattice point if and only if x = n is an integer (where 1 ≤ n ≤ b − 1)
and y = a

b
n is an integer, that is b divides an. The fact that b and a have no common factors

implies that b must divide n. But since 1 ≤ b ≤ n − 1, this is impossible. Consider the
rectangle R = {(x, y) : 0 ≤ x ≤ b, 0 ≤ y ≤ a}. In the interior of this rectangle there are
(a− 1)(b− 1) lattice points and none of them are on the South West-North East diagonal.
Then the lattice points inside the interior of R which are below this diagonal are exactly
those which are inside S and the number of them are (a−1)(b−1)

2
.

b) Let C =
∑b−1

n=1

[
na
b

]
. Change the summation index to k = b− n. Then

C =
b−1∑
n=1

[na

b

]
=

1∑

k=b−1

[
(b− k)a

b

]
=

b−1∑

k=1

[
a− ka

b

]

=
b−1∑

k=1

(
a +

[
−ka

b

])
(by exercise 4.a) on page 64.)

=
b−1∑

k=1

(
a−

[
ka

b

]
− 1

)
(by exercise 4.b) on page 64.)

= (a− 1)(b− 1)−
b−1∑

k=1

[
ka

b

]

︸ ︷︷ ︸
C

So

C = (a− 1)(b− 1)− C ⇒ C =
(a− 1)(b− 1)

2
.

3) Evaluate the integral
∫ 5

−2
|x2 − 2x|dx.

Solution: First we examine the sign of f(x) = x2 − 2x. It is easy to see that f(x) = 0

when x = 0 or when x = 2. It the follows that |x2 − 2x| =
{

x2 − 2x if x 6∈ (0, 2),
2x− x2 if x ∈ [0, 2].

We can now easily evaluate our integral
∫ 5

−2

|x2 − 2x| dx =

∫ 0

−2

(x2 − 2x)dx +

∫ 2

0

(2x− x2)dx +

∫ 5

2

(x2 − 2x)dx

=

(
x3

3
− x2

∣∣∣∣
0

−2

)
+

(
x2 − x3

3

∣∣∣∣
2

0

)
+

(
x3

3
− x2

∣∣∣∣
5

2

)

=
20

3
+

4

3
+ 18

= 26.
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4) Solve Exercise 14 on page 114: A napkin-ring is formed by drilling a cylindrical hole
symmetrically through the center of a solid sphere. If the length of the hole is 2h, prove that
the volume of the napkin-ring is πah3, where a is a rational number.

Solution: Assume that the solid sphere is given by the equation x2 + y2 + z2 = r2, where
r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is
expressed by the equation x2 +y2 = c2 for some positive constant c. Now assume that we cut
this napkin-ring by the yz-plane, or equivalently by the x = 0 plane. The resulting picture is
depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular
to the yz-plane along the line AC, the slice obtained would look like a ring, consisting of a
disk of radius AC out of which which a disk of radius AB is cut off. The area of this ring is
π(AC2 − AB2). So we set out to write this area explicitly:

Since the sphere x2 + y2 + z2 = r2 is cut off by the plane x = 0, the resulting circle of the
figure has the form y2 + z2 = r2.

Since the point (c, h) is on this circle, we have c2 = r2 − h2. Observe that c = AB.

Since the point (y, z) is on the circle, we have as above y2 = r2 − z2. Observe again that
y = AC.

Thus the area of the slice is π(AC2 − AB2) = π(h2 − z2).

To find the volume we have to add/integrate all these areas as z changes from −h to h.

Volume =

∫ h

−h

π(h2 − z2)dz

= π

(
h2z − z3

3

∣∣∣∣
h

−h

)

=
4

3
πh3,

as claimed. The surprising thing about this result is that the volume of the napkin-ring is
independent of the radius of the solid sphere out of which it is cut off.
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(c,h)

(y,z)

(r,0)

(c,-h)

A B C

The figure for the napkin-ring problem.

27 October 2003 Monday.
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