Oct 20, 2003

MATH 113 HOMEWORK 2
SOLUTION MANUAL

1) Find a formula for each of the following expressions and prove your formula using
induction.

i) 12+22 4. +n%

Solution. We have (k + 1)® — k* = 3k* + 3k + 1. Writing this for k =1,2,3--- ,n and
213 = 3.-1243-1+1
33— 23 3-2243-241
43 -3 = 3.324+43.3+1

(n+17°—-n* = 3-n*+3-n+1

and adding we get

(n+1°=1=3> K +3> +n
k=1 k=1

and solving this for Y _, k* we obtain

Zkz n+16(2n—|—1) ().

Now we prove this by induction for all integers n > 1.
For n = 1, both sides are equal to 1. Assume the formula is true for some integer n > 1, i.e.
assume that 12 + 22 + ... n? = "(”H# Add (n + 1)? to both sides. We get

12422444 (n4 1) = "<”+1)6(2"+1) +(n+1)2
nin+1)2n+1) +6(n+1)2
(n + Dn(2n f 1) +6(n+1)]
(n+1)(2n? —i—gn + 6)
(n+1)(n E 2)(2n + 3)
(n+ 1)[(n—6|—1) +1]2(n+1) + 1]
6

So the formula is true for n + 1. Thus by induction the formula (*) is true for all integers
n>1.



i) 12-22432—42+ .-+ (—=1)" n2
Solution. Let f(n) =1—22+43%—--- 4+ (=1)""'n% We try a few values of n. We see that

and these are numerically same as
1,1+2=3,1+2+3=6,1+2+34+4=10,1+2+3+4+5=15

but signs alternate. So we guess that

n(n+1)

fn) =12 =22 43— (=1)"'n® = (=" forallm>1  (xx).

Now we prove (**) by induction.
Forn =1, f(1) =1 and (—1)”_1@ = 1, so the formula is true for n = 1. Now assume

(**) is true for some integer n > 1, i.e. assume

fln)=1"=22+... 4+ (=1)"'n* = (—1)"1@.
Add (—1)"(n + 1)* to both sides
fln+D)=12=22 4.+ (D)2 + (-D"(n+1)? = (—1)"—1@ + (=1)"(n + 1)
= )"+ 1) (5-(m+1))
— U )T

Ll 1)2(n +2)

So the formula is true for n + 1. Thus by mathematical induction the formula (**) is true
for all integers n > 1.

0 (208 (8

Solution. Let

= (DD - ) (- ()

13 2 4 n—1 n+1
2 2 3 3 4 4 n n
_n+1
9

So we claim that

g(n) = (1—%) (1_%)..(1—%) =TI fornz2 (ees)




Forn=2,1— 2% =32 and % = 2, 50 the claim is true for n = 2. Assume the formula (¥**)

is true for some integer n > 2, i.e.,

= (-3) (-3) (- 3) -5

multiplying both sides by 1 — m,

g(n—+1) zsmﬁ(y—mi1y>:n;}(l_5ﬁgﬁ)
n+l n*+2n  n+2

on  (n+1?2 2n+1)

So the formula (**%*) is true for n + 1. Thus by induction the formula (***) is true for all
integers n > 2.

2) Solve Exercises 6 and 7 on page 64.
Solution of Exercise 6. Let a and b be integers such that a < b, and f be a nonnegative
real valued function defined on [a,b]. Let S be the set

S={(r,y):a<x<b 0<y< fla)}

We are asked to show that the number of lattice points in S is given by

(Here [x] denotes the greatest integer < x.)

Note that S does not contain the part of the z-axis in the ordinate set of f.

Given any positive real number y, [y] is the number of integers k such that 0 < k£ < y. If
y = 0, then, there is no integer k such that 0 < k < y and [y]=0. So if y > 0, then [y] is the
number of integers k such that 0 < £ < y. Now if n is an integer, taking y = f(n), we have
that [f(n)] is the number of integers k such that 0 < k < f(n), i.e. the number of lattice
points on the half open segment {(x,y) : ¢ =n,0 <y < f(n)}. As n changes through the
integer values in the interval [a, b] we get all the lattice points in the set S.

Solution of Exercise 7. Let a and b be positive integers with no common factors. We are
asked to show that

b—1

SO

n=1

For b = 1, define the sum on the left hand side as 0. So assume that b > 2.
a) Consider the set

S:{(x,y):lgxgb—1,0<y§%x}

This is the set S in the previous problem with f(z) = 2. According to the previous problem

the number of lattice points in S' is Zf:l [4n].

Now let us count these lattice points some other way. Consider the line segment y = ¢z, for

3



1 <z <b—1. On this line segment there are no lattice points. For if (z,y) is a point on this
segment, then it is a lattice point if and only if x = n is an integer (where 1 <n <b—1)
and y = ¢n is an integer, that is b divides an. The fact that b and a have no common factors
implies that b must divide n. But since 1 < b < n — 1, this is impossible. Consider the
rectangle R = {(z,y) : 0 <z < b, 0 <y < a}. In the interior of this rectangle there are
(a — 1)(b — 1) lattice points and none of them are on the South West-North East diagonal.
Then the lattice points inside the interior of R which are below this diagonal are exactly
those which are inside S and the number of them are %

b) Let C = Zz;ll [2¢]. Change the summation index to k = b — n. Then

oS- g 1By

=1 k=b— k=1
-1

I
[
/7~
)

_l’_

k
e by exercise 4.a) on page 64.
b

= (a - {l%a} - 1) (by exercise 4.b) on page 64.)

= b—1
= (a—1)(b—1) Z[ }
k=1
C
So
Cz(a—l)(b—l)—CjC:W.

3) Evaluate the integral fE’Q |22 — 2x|dz.

Solution: First we examine the sign of f(z) = x® — 2x. It is easy to see that f(z) = 0

2 .
when x = 0 or when = 2. It the follows that |z? — 2| = - 295 l.f v (0,2),
20 —x? if x€]0,2].

We can now easily evaluate our integral

5 0 2 5
/ |2 — 2x|dx = / (z* — 2x)dx + / (2x — 2%)dx + / (2% — 2z)dx
-2 -2 0 2

0 2
+ xz—ig + ig—f
_2 3 1 3




4) Solve Exercise 14 on page 114: A napkin-ring is formed by drilling a cylindrical hole
symmetrically through the center of a solid sphere. If the length of the hole is 2h, prove that
the volume of the napkin-ring is mah?®, where a is a rational number.

Solution: Assume that the solid sphere is given by the equation % + y? + 22 = r2, where
r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is
expressed by the equation 22 442 = ¢? for some positive constant c. Now assume that we cut
this napkin-ring by the yz-plane, or equivalently by the x = 0 plane. The resulting picture is
depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular
to the yz-plane along the line AC, the slice obtained would look like a ring, consisting of a
disk of radius AC' out of which which a disk of radius AB is cut off. The area of this ring is
m(AC? — AB?). So we set out to write this area explicitly:

Since the sphere 22 + y? 4 22 = r? is cut off by the plane x = 0, the resulting circle of the
figure has the form y? + 22 = r2.

Since the point (¢, h) is on this circle, we have ¢ = r? — h?. Observe that ¢ = AB.

2

Since the point (y, z) is on the circle, we have as above y* = r? — z2. Observe again that

y = AC.
Thus the area of the slice is m1(AC? — AB?) = n(h* — 22).

To find the volume we have to add/integrate all these areas as z changes from —h to h.

h
Volume = / m(h?* — 2*)dz

as claimed. The surprising thing about this result is that the volume of the napkin-ring is
independent of the radius of the solid sphere out of which it is cut off.



(c.h)

(v,2)

(r,0)

(c,-h)

The figure for the napkin-ring problem.
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