Date: October 2004
Instructor: Ali Sinan Sertoz

Exercise 12, page 45 of Apostol’s Calculus:
(a) Use the binomial theorem to prove that for n a positive integer we have
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(b) If n > 1, use part (a) and the fact that 2" < n! for all n > 4, to deduce the inequalities
2< |1+ AN <1+ i ! <3
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Solution:
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coefficient. Using this we write
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(b) First recall that 2" < n! for n > 4, which can be easily proven by induction. We will use
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this in the form — < on for n > 4.
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Now back to our problem. Clearly each 1 — — < 1, so H (1 — —) < 1. Hence from the first
n n
r=0

part of this solution we get
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For the second inequality we simply add the terms on the right hand side. By direct computation



we see that the right hand side is < 3 for n = 2,3. So take n > 4.
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This proves the inequalities
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For the remaining inequality first observe that for n = 2, we clearly have 2 < (1+1/2)? = 9/4.
For n > 2 we use the result of part (a):
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> 2, since each term in the summation is positive.

Hence we finally get, for all n > 1,
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