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Math 113 Calculus — Midterm Exam I — Solutions

Q-1) Calculate the following limits:
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Q-2) Find the volume cut from the top of a solid sphere of radius R by a plane h distance away
from the center, 0 < h < R.

Solution: Required volume is obtained by revolving the circle z* + y*> = R? around z-axis,
from x = h to z = R.
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Q-3) Find a reasonable approximation for the integral
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and give an estimate for your error.

Solution: Use the weighted mean value theorem for integrals: If f and g are continuous on
[a,b] and if g does not change sign on the interval, then
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/ f(x)g(x) dx = f(c)/ g(x) dx, for some c € [a,b].

In this problem take f(z) = 1/v/1+ 323 and g(z) = 5. For every ¢ € [0,1] we have 1/2 <
f(e) <1, so we get
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We may take the midpoint of the interval [1/14,1/7] as a reasonable approximation for this
integral. Then the error made cannot exceed half the length of this interval. Hence we have
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with an error not exceeding — = 0.035.... In fact the actual value of this integral is 0.082...

which is in the predicted interval.



Q-4) Ts it possible to construct a continuous function f : [0, 1] — [0, 1] with the property that for
every 7o € [0, 1] there are exactly two distinct z1, xo € [0, 1] such that f(z1) = f(x2) = yo?

Solution: No!. The proof is an exercise in repeated use of the intermediate value property of
continuous functions.

Let a; < ag and by < by be those points in [0, 1] with f(a) = f(az) = 0 and f(by) = f(b2) = 1.

Case 1: Assume by, by & [a1,as]. Without loss of generality we may assume that by < a; < as.
Let M = § max{f(x)|z € [a1,as]} and denote by ¢ the point in [a1, as] where f(c) = M. Then
f takes the value M at least three times; once in each of the intervals [by, a4], [a1, ] and [c, as].
This is a contradiction. (Observe that the case a; < ay < by is treated exactly the same.)

Case 2: Assume that only one of by, by is in [a1, as]. Without loss of generality we may assume
that a; < by < as < by Take any number 0 < T" < 1. Then f takes T" at least three times; once
in each of the intervals [as, b1], [b1, as] and [ag,bs]. This is a contradiction. (Observe that the
case by < a; < by < ay is treated exactly the same.)

If both of the points by, by are in [aq, as], then this is equivalent to the first case above with the
roles of a;’s and b;’s switched.

This shows that no such continuous function exists.
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Q-5) Let ¢ = . Also let F} = Fy =1 and F,, = F,,_1 + F,,_» for every integer n > 2.

Prove that ¢" = ¢F,, + F,,_; for every n > 2.

Solution: We prove this by induction.
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. So the claimed equality for n = 2, i.e. ¢?* = ¢ + 1 holds.

n = 2 case: On the one hand we have ¢? = . On the other hand ¢Fy + F) = ¢+ 1 =
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Now we assume that the claimed equality holds for every k < n. We start with the right hand
side of the claimed equality for the n 4+ 1 case and obtain the left hand side:

¢Fn+1 + Fn = ¢(Fn + anl) + (anl + Fn72)7 property of the F7IZS
= (¢Fn+ Fo1) + (9F—1 + Fo2)
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= ¢" Y¢?), k=2 case
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This completes the proof.




