Calculus 113 Homework 4

Due date: 2 November 2007 Friday

Please take your homework solutions to room SA144, Ali Adalı's office.

- **Q-1)** Find the largest $\delta > 0$ satisfying the property that for all $x, y \in [0, 100]$ with $|x y| < \delta$, we have $|x^2 y^2| < 1$. Show that no such $\delta > 0$ exists if we choose $x, y \in [0, \infty)$.
- **Q-2-a)** Find a function f which is continuous and bounded but not uniformly continuous on (0, 1].
- **Q-2-b)** Find a function f which is continuous and bounded but not uniformly continuous on $[0, \infty)$.
- **Q-3-a)** For any non-negative integer $n \in \mathbb{N}$, find a function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{(n)}(x)$ exists and is continuous for all $x \in \mathbb{R}$, but $f^{(n+1)}(0)$ does not exist.
- **Q-3-b)** For any non-negative integer $n \in \mathbb{N}$, find a function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{(n)}(x)$ exists for all $x \in \mathbb{R}$, but $f^{(n)}(x)$ is not continuous at x = 0.
- Q-4-a) Consider the function

$$f(x) = \begin{cases} x^2 \sin^2(1/x) & x \neq 0\\ 0 & x = 0. \end{cases}$$

Show that x = 0 is a local minimum for f but f is neither decreasing to the left of 0 nor increasing to the right of it.

Q-4-b) Consider the function

$$f(x) = \begin{cases} \alpha x + x^2 \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

where $0 < \alpha < 1$. Show that $f'(0) = \alpha > 0$ but f is not increasing on any open interval containing 0.