Calculus 113 Homework 4

Due date: 2 November 2007 Friday
Please take your homework solutions to room SA144, Ali Adal's office.

Q-1) Find the largest $\delta>0$ satisfying the property that for all $x, y \in[0,100]$ with $|x-y|<\delta$, we have $\left|x^{2}-y^{2}\right|<1$. Show that no such $\delta>0$ exists if we choose $x, y \in[0, \infty)$.

Q-2-a) Find a function f which is continuous and bounded but not uniformly continuous on $(0,1]$.
Q-2-b) Find a function f which is continuous and bounded but not uniformly continuous on $[0, \infty)$.
Q-3-a) For any non-negative integer $n \in \mathbb{N}$, find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(n)}(x)$ exists and is continuous for all $x \in \mathbb{R}$, but $f^{(n+1)}(0)$ does not exist.
Q-3-b) For any non-negative integer $n \in \mathbb{N}$, find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(n)}(x)$ exists for all $x \in \mathbb{R}$, but $f^{(n)}(x)$ is not continuous at $x=0$.

Q-4-a) Consider the function

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin ^{2}(1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Show that $x=0$ is a local minimum for f but f is neither decreasing to the left of 0 nor increasing to the right of it.
Q-4-b) Consider the function

$$
f(x)=\left\{\begin{array}{cc}
\alpha x+x^{2} \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

where $0<\alpha<1$. Show that $f^{\prime}(0)=\alpha>0$ but f is not increasing on any open interval containing 0 .

