Calculus 113 Homework 6

Solutions

Q-1) Find a recursive formula for I, = / ™ In"x dr, and use it to evaluate

2
/ 2% In?x dx.
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Solution: By applying by-parts with « = In" x we find immediately that

Im+1 n
= In"z —
m+1 m+1

m,n Im,n—l-

This suggests that we can explicitly evaluate 1, ,,. First check that for any integer m > 0,

g
fmo = m+1+c’
I, = :lm—:lnx—%_i_a
fma = ;mjlllnzx_%lnw+%+0,
Ina = ;mjll lngx_%lnzx+%lnx—%+a

From these we guess that for any integers m,n > 0, we should have:
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We can check the validity of this expression either by induction or by simply taking the
derivative of both sides.

Using this we see that
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and
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Q-6) Let f : (a,b) — R be a uniformly continuous function. Show that there exists a
continuous function F' : [a,b] — R such that F(z) = f(z) for all x € (a,b).

Solution: Assume that lim f(z) and lim f(z) exist. Then define the function F(x)

r—b— r—a+
on [a, b] as follows:
f(z), if z € (a,b),
F(z) = mligl_ f(z) ifx=0,
limJr flz) ifzx=a.

Clearly F'(z) is continuous on [a, b], and being continuous on a closed and bounded inter-
val, it is uniformly continuous.

It remains to show that these limits exist. We will show that the nonexistence of any of
these limits contradicts the uniform continuity of f on (a,b).

First recall that in general lim, ., f(x) exists means
JL € R Ve > 0 36 > 0 such that Vo € Bs(b) N (a,b) we have |f(z) — L] <,

where Bs(b) = {t € R| |t — b| < §}. In particular, if we choose any two points x,y €
Bs(b) N (a,b), we should have

) = FW)l = (/) = D) = (f() = DI < |£(@) — L] + |f(y) — L] < 2
We thus showed that if lim, ., f(z) exists, then
dL € R Ve > 03§ > 0 such that Vz,y € Bs(b) N (a,b) we have |f(z) — f(y)| < 2e.
Negating this we find that if lim, ., f(x) does not exist, then
VL € R Je > 0 such that V6 > 0 3z, y € Bs(b) N (a,b) such that |f(z) — f(y)] > 2¢ > e.

Here note two things. First note that L does not show up in the concluding statement,
and next observe that x,y € Bs(b) N (a,b) implies |z —y| < §. So we actually showed that
if lim, ., f(z) does not exist, then

Jde > 0 such that V§ > 0 3z, y € (a,b) with |z — y| < J such that |f(z) — f(y)| > e.
On the other hand f is uniformly continuous so we do have
Ve > 0 36 > 0 such that Vz,y € (a,b) with |z — y| < J we have |f(z) — f(y)] <e.

The last two statements obviously claim exactly the opposite things.

This contradiction shows that lim, ., f(x) exists. Similarly lim, ., f(x) exists, and that
completes the solution.
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