Math 113 Calculus – Homework 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Please do not write anything inside the above boxes!

Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let \(f : (a, b) \rightarrow \mathbb{R} \) be a differentiable function. Assume that for some \(x_0 \in (a, b) \), \(\lim_{x \to x_0} f'(x) \) exists and is \(L \). Show that \(f'(x_0) = L \).
Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that f' is not continuous at some $x_0 \in \mathbb{R}$.

Prove or disprove each of the following statements:

(i) It is possible that $\lim_{x \to x_0^+} f'(x) = f'(x_0)$.

(ii) It is possible that $\lim_{x \to x_0^+} f'(x) = L \neq f'(x_0)$.

(iii) It is possible that $\lim_{x \to x_0^+} f'(x) = \infty$.

Q-3) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Assume that $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$.

Prove or disprove the following statement:

There exists a $\delta > 0$ such that f is increasing (strictly or not) on the interval $(x_0 - \delta, x_0 + \delta)$.
Q-4) Find all the points, if any exist, on this ellipse
\[\frac{(x-2)^2}{9} + \frac{(y-3)^2}{4} = 1 \]
satisfying the property that the line joining the point to the origin is tangent to the ellipse at that point.

(You may use a computer algebra program if need arises.)
Q-5) Find the equation of the tangent line to the curve \(x^2 y^3 - x^3 y^2 = 4 \) at the point \((1, 2)\). Show that there is no point \(p = (x_0, y_0) \) on the curve where the tangent line to the curve at \(p \) passes also from the origin.