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Q-1) Evaluate the following line integral∫
C

x2

1 + y
dx + exy x dy

where C is the curve y = x2 from the point A(0, 0) to the point B(1, 1).

Solution. Call the given line integral I. So

I =

∫
C

x2

1 + y
dx + exy x dy.

Parameterize C as C : ~r(t) = t~i + t2~j, 0 ≤ t ≤ 1. Substituting x = t, y = t2 into I we get

I =

∫ 1

0

(
t2

1 + t2
+ et·t2t · 2t

)
dt =

∫ 1

0

(
t2

1 + t2
+ 2et3t2

)
dt

=

∫ 1

0

(
1− 1

1 + t2
+

2

3
et33t2

)
dt =

(
t− arctan t +

2

3
et3

)∣∣∣∣1
0

= 1− arctan 1︸ ︷︷ ︸
π
4

+
2

3
e− 0− arctan 0︸ ︷︷ ︸

0

−2

3
e0︸︷︷︸
1

= 1− π

4
+

2

3
e− 2

3
=

4 + 8e− 3π
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Q-2) Evaluate the line integral∫
C

2 cos y dx +

(
1

y
− 2x sin y

)
dy +

1

z
dz

where C is the curve of intersection of the surfaces (8− π)x + 2y − 4z = 0 and
16z = (32− π2)x2 + 4y2 from the point A(0, 2, 1) to the point B(1, π/2, 2).

Solution. Call the given line integral I. So

I =

∫
C

2 cos y dx +

(
1

y
− 2x sin y

)
dy +

1

z
dz.

Let

M = 2 cos y, N =
1

y
− 2x sin y, P =

1

z
.

Then I =
∫

C
M dx+N dy+P dz. First we show that the differential form M dx+N dy+P dz

is exact.

∂M

∂y
= −2 sin y ,

∂N

∂x
= −2 sin y are equal,

∂M

∂z
= 0 ,

∂P

∂x
= 0 are equal,

∂N

∂z
= 0 ,

∂P

∂y
= 0 are equal.

So the differential form is exact, thus there is a scalar function f : R3 → R such that

∂f

∂x
= M = 2 cos y,

∂f

∂y
= N =

1

y
− 2x sin y,

∂f

∂z
= P =

1

z
.



Integrating the first equation with respect to x we get

f(x, y, z) = 2x cos y + g(y, z).

Then
∂f

∂x
= N ⇒ −2x sin y +

∂g

∂y
=

1

y
− 2x sin y ⇒ ∂g

∂y
=

1

y
.

Integrating with respect to y we get g(y, z) = ln |y|+h(z). So f(x, y, z) = 2x cos y+ln |y|+h(z)
and

∂f

∂z
= P ⇒ h′(z) =

1

z
⇒ h(z) = ln |z|+ C.

So
f(x, y, z) = 2x cos y + ln |y|+ ln |z|+ C.

So we have that

I = f(1, π/2, 2)− f(0, 2, 1)

= (2 cos(π/2)︸ ︷︷ ︸
0

+ ln |π/2|+ ln |2|+ C)− (0 + ln |2|+ ln |1|︸︷︷︸
0

+C) = ln(π/2)

Q-3-A) Let ~F(x, y, z) = M(x, y, z)~i+N(x, y, z)~j+P (x, y, z)~k be a vector field such that M, N and

P have continuous second order partial derivatives. Show that div (curl ~F) = 0.

Solution.

curl ~F = ∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣ =~i

(
∂P

∂y
− ∂N

∂z

)
−~j

(
∂P

∂x
− ∂M

∂z

)
+ ~k

(
∂N

∂x
− ∂M

∂y

)
.

Then

div (curl ~F) = ∇ · (curl ~F)

=
∂

∂x

(
∂P

∂y
− ∂N

∂z

)
+

∂

∂y

(
−

(
∂P

∂x
− ∂M

∂z

))
+

∂

∂z

(
∂N

∂x
− ∂M

∂y

)
=

∂2P

∂x ∂y
− ∂2N

∂x ∂z
− ∂2P

∂y ∂x
+

∂2M

∂y ∂z
+

∂2N

∂z ∂x
− ∂2M

∂z ∂y
= 0

by the equality of the mixed partial derivatives.

Q-3-B) Is there a vector field ~G such that

curl ~G = 5x~i + 7y~j− 2z ~k?

If there is, find ~G. If there is no such ~G, explain why.

Solution. If there is such a ~G then by part A) we have that

div (curl ~G) = div (curl (5x~i + 7y~j− 2z ~k)) = 0,

that is 5 + 7− 2 = 0. Since this is not true, there is no such ~G.

Q-4) By using the Stokes’ theorem, evaluate∫
C

(y − z) dx + (z − x) dy + (x− y) dz

where C is the intersection of the cylinder x2 + y2 = 1 and the plane x
3

+ z
4

= 1 traversed in
the counterclockwise sense when viewed from high above the xy-plane.



Solution. Call the given line integral I, so

I =

∫
C

(y − z) dx + (z − x) dy + (x− y) dz.

Let ~F = (y − z)~i + (z − x)~j + (x − y)~k. Then I =
∮

C
~F · ~T ds and by Stokes’ theorem

I =
∫∫

S
curl ~F · ~n dσ, where

S :
x

3
+

z

4
− 1︸ ︷︷ ︸

f(x,y,z)

= 0, ~n = ∓ ∇f

|∇f |
= ∓

1
3
~i + 1

4
~k√

1
9

+ 1
16

= ∓
(

4

5
~i +

3

5
~k

)
.

Since ~n has positive third component we have that

~n =
4

5
~i +

3

5
~k.

Also

curl ~F = ∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

y − z z − x x− y

∣∣∣∣∣∣ =~i(−1− 1)−~j(1 + 1) + ~k(−1− 1) = −2~i− 2~j− 2~k.

So I =
∫∫

S

(
−8

5
− 6

5

)
dσ = −14

5

∫∫
S

dσ. Taking the xy-plane as the ground plane we have ~p = ~k.
Also the projection of S on the ground plane is the disk R : x2 + y2 ≤ 1. Then

I = −14

5

∫ ∫
S

dσ = −14

5

∫ ∫
R

|∇f |
|∇f · ~p|

dA = −14

5

∫ ∫
R

|1
3
~i + 1

4
~k|

|1
4
|

dxdy

= −14

5

∫ ∫
R

√
1
9

+ 1
16

1
4

dxdy = −14

3
Area(R) = −14

3
π.


