Due on February 13, 2006, Monday
MATH 114 Homework 1 — Solutions

1. [p631-ex65] Find the values of p for which each integral converges.

/2 dx /°° dx
a | ———, b. i
1 z(lnx)p 5 z(lnz)p

In2
d
Solution-a:  Changing variables by © = Inx converts the integral to / T
o x(lnz)?
When p = 1, this is (ln u|gl2) which diverges since In is not defined at 0. When p # 1,
1-p
the integral evaluates to u—|})n2) which converges if and only if 1 —p > 0, to avoid

division by zero. So this integral converges for p < 1 and diverges for p > 1.

< dx
Solution-b: The same change of variables now converts the integral into / ﬂ.
e T(lnx
Again for p = 1 we have divergence since Inu goes to infinity as u goes to infinity. When
p # 1 we now need to have 1 — p < 0 so that when u goes to infinity the value of the

integral converges. Hence this integral converges when p > 1 and diverges when p < 1.

2. [p637-ex144] Evaluate the following improper integral.
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Solution:
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= I%im arctan(x/4)|gR+l%im arctan(x/4)|%
-7 m
0-+E -0

= T.




3. [p637-ex148] Does this improper integral converge or diverge?
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— dt.
I

e—t

Vit

o)
/ e~ ' dt converges, by direct computation.
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Solution: <etfort>1.

So the given integral converges by comparison.

4. [p638-ex218] Evaluate the integral
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Solution:
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5. [p638-ex220] Find a positive number a satisfying
/ ¢ odr / < dx
o 1+a2 J, 1422

Solution: Evaluating both sides (the antiderivative is arctan x), we find arctana — 0 =

s T -
5~ arctan a. Hence arctana = 1 and ¢ = tan =1




