MATH 114 Homework 1 – Solutions

1. [p631-ex65] Find the values of p for which each integral converges.

$$\mathbf{a.} \int_{1}^{2} \frac{dx}{x(\ln x)^{p}}, \qquad \qquad \mathbf{b.} \int_{2}^{\infty} \frac{dx}{x(\ln x)^{p}}.$$

Solution-a: Changing variables by $u = \ln x$ converts the integral to $\int_0^{\ln 2} \frac{dx}{x(\ln x)^p}$. When p = 1, this is $(\ln u|_0^{\ln 2})$ which diverges since \ln is not defined at 0. When $p \neq 1$, the integral evaluates to $\left(\frac{u^{1-p}}{1-p}|_0^{\ln 2}\right)$ which converges if and only if 1-p>0, to avoid division by zero. So this integral converges for p < 1 and diverges for $p \geq 1$.

Solution-b: The same change of variables now converts the integral into $\int_{\ln 2}^{\infty} \frac{dx}{x(\ln x)^p}$. Again for p=1 we have divergence since $\ln u$ goes to infinity as u goes to infinity. When $p \neq 1$ we now need to have 1-p < 0 so that when u goes to infinity the value of the integral converges. Hence this integral converges when p > 1 and diverges when $p \leq 1$.

2. [p637-ex144] Evaluate the following improper integral.

$$\int_{-\infty}^{\infty} \frac{4dx}{x^2 + 16}.$$

Solution:

$$\int_{-\infty}^{\infty} \frac{4dx}{x^2 + 16} = \lim_{R \to \infty} \int_{-R}^{0} \frac{4dx}{x^2 + 16} + \lim_{R \to \infty} \int_{0}^{R} \frac{4dx}{x^2 + 16}$$

$$= \lim_{R \to \infty} \arctan(x/4)|_{-R}^{0} + \lim_{R \to \infty} \arctan(x/4)|_{0}^{R}$$

$$= (0 - \frac{-\pi}{2}) + (\frac{\pi}{2} - 0)$$

$$= \pi.$$

3. [p637-ex148] Does this improper integral converge or diverge?

$$\int_{1}^{\infty} \frac{e^{-t}}{\sqrt{t}} dt.$$

Solution: $\frac{e^{-t}}{\sqrt{t}} \le e^{-t}$ for $t \ge 1$.

 $\int_{1}^{\infty} e^{-t} dt$ converges, by direct computation.

So the given integral converges by comparison.

4. [p638-ex218] Evaluate the integral

$$\int_{2}^{\infty} \frac{4v^3 + v - 1}{v^2(v - 1)(v^2 + 1)} \ dv.$$

Solution:

$$\int_{2}^{\infty} \frac{4v^{3} + v - 1}{v^{2}(v - 1)(v^{2} + 1)} dv = \lim_{R \to \infty} \int_{2}^{R} \frac{4v^{3} + v - 1}{v^{2}(v - 1)(v^{2} + 1)} dv$$

$$= \lim_{R \to \infty} \int_{2}^{R} \left(\frac{1 - 2v}{v^{2} + 1} + \frac{1}{v^{2}} + \frac{2}{v - 1} \right) dv$$

$$= \lim_{R \to \infty} \left(\arctan v - \ln(v^{2} + 1) - \frac{1}{v} + 2\ln(v - 1) \Big|_{2}^{R} \right)$$

$$= \lim_{R \to \infty} \left(\ln \frac{(v - 1)^{2}}{v^{2} + 1} + \arctan v - \frac{1}{v} \Big|_{2}^{R} \right)$$

$$= \frac{\pi}{2} - \arctan 2 + \ln 5 + \frac{1}{2}.$$

5. [p638-ex220] Find a positive number a satisfying

$$\int_0^a \frac{dx}{1+x^2} = \int_a^\infty \frac{dx}{1+x^2}.$$

Solution: Evaluating both sides (the antiderivative is $\arctan x$), we find $\arctan a - 0 = \frac{\pi}{2} - \arctan a$. Hence $\arctan a = \frac{\pi}{4}$ and $a = \tan \frac{\pi}{4} = 1$.