Date: 4 March 2006, Saturday
Instructor: Ali Sinan Sertoz
Time: 10:00-12:00

Math 114 Calculus — Midterm Exam I — Solutions
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Q-1-a) Does the improper integral / (16—)3 dx converge or diverge?
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Solution: Inz > 1 for x > 3, so

[0 e dox = e < 00, so the given integral converges by direct comparison.
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Q-1-b) Find the value, if it exists, of the improper integral / ﬁ, where k£ > 1 is any
9 x(lnzx
real number.
Solution: Use the substitution v = Inz to write
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Solution: Let A = (7n + 6) . Then
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Now using L’Hopital’s rule we get
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Hence lim (7n + 6> = 10/7,
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We can also calculate this limit as follows: First let m = 7n + 4. Then

(1 %)] = [ [ =

m—4

6\ (m2\’T) 2\"*
lim = lim ( —— = lim 14—




oo 1
Q-2-b) Does the series T T converge or diverge?
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Solution: Observe that 1 + 3 4+---4+—<1+Inn <nforall n > 1, where we write the

n
first inequality by examining the graph of y = 1/z and the second inequality is obvious if you
consider the function f(z) =z —1—Inz for x > 1.
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An easier observation is that 1+§+§+-~+—<1+1+1+~~~+1:nf0rn>1.
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Now if we let a,, = T T, we see that a,, > — for all n > 1, and E T T
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diverges by direct comparison with the harmonic series.

Q-3) Find all values of x for which the power series Z n_' x™ converges.
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Solution: First let a,(z) = —~ x" and use the ratio test.
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= <1 + —> |z| — e |z| as n — oco. So the series converges absolutely for |z| < 1/e.
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To check the end points we may use Stirling’s formula, see page 759 exercise 90 and page 640
exercise 50.
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As a consequence of Stirling’s formula, for large n we have, n! = ( 1
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where lim ¢(n) = 0.
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Also observe that
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n > 1.
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From these we first conclude that the series converges for x = —— by the alternating series test.
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For x = —, we limit compare the series with Z ——- which diverges by p-test, p < 1.
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So the series diverges for # = —, and the interval of convergence is [—1, 1).
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Q-4) Find a power series solution to the initial value problem
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Iy = 0) = 0.
v-y=5 y(0)

Can you recognize the solution in terms of elementary functions?

Solution: Putting y = ag + a1z + asz? + - + a,2™ + - - - we immediately find that ag = 0,

1
a; =0, ay =0, ag = 1/3!, and in general (n + 1)a,41 — a, = 0 for n > 2. This gives a,, = —
for n > 2.
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, if it exists.
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Solution: We use the Taylor series of the functions involved to find
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