Summer 2007-08 MATH 116 Homework 2

Due on July 2, 2008. No late homework will be accepted.

1. Use the method of Lagrange multipliers to find the maximum and minimum values of the function

$$f(x,y) = x^2 + 2y^2 + 2x + 3$$

subject to the constraint $x^2 + y^2 = 4$.

2. Does the following limit exist

$$\lim_{(x,y)\to (0,0)} \frac{e^{x+y}-1-x-y-xy}{x^2+y^2}.$$

Calculate the above limit if it exists. (Hint: You might want to use Taylor's formula for functions of two independent variables.)

- 3. Calculate $\int_{2}^{3} \int_{2}^{y} \frac{\sin(x)}{x} dx dy + \int_{3}^{4} \int_{2}^{3} \frac{\sin(x)}{x} dx dy + \int_{4}^{9} \int_{\sqrt{y}}^{3} \frac{\sin(x)}{x} dx dy$.
- 4. Calculate the area of the region enclosed by the curve $r = \cos(2\theta)$.
- 5. Calculate the improper integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx dy.$$