
Solution to MATH 116 MIDTERM 1 Examination, 21/06/2008

1. a) Use the ε− δ definition of limit to show that

lim
(x,y)→(0,0)

x4y4

x2 + y4
= 0 .

Solution. Our aim is to show that
for any ε > 0 there exists δ > 0 such that

0 <
√

x2 + y2 < δ =⇒
∣∣∣∣

x4y4

x2 + y4
− 0

∣∣∣∣ < ε . (∗)

We have, ∣∣∣∣
x4y4

x2 + y4
− 0

∣∣∣∣ = x4 y4

x2 + y4
≤ x4 ≤ (x2 + y2)2 < δ4 .

Taking δ = ε1/4 provides the implication (∗).

Note that the choice δ = ε1/4 is not unique. For example, any positive δ that is less than ε1/4,
or δ ≤ min{1, ε} will provide (∗) as well.

1. b) Show that

lim
(x,y)→(0,0)

x4y4

(x2 + y4)3

does not exist.

Solution. Since

lim
(x,y)→(0,0),y=x

x4y4

(x2 + y4)3
= lim

x→0

x8

(x2 + x4)3
= 0

and

lim
(x,y)→(0,0),x=y2

x4y4

(x2 + y4)3
= lim

y→0

y12

(y4 + y4)3
=

1

8
6= 0,

then, by the Two Path Test, the limit does not exist.
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2. a) Let f(t) be a differentiable function. If u(x, y) = f
(

x
y

)
for y 6= 0, prove that u(x, y)

satisfies the partial-differential equation

x
∂u

∂x
+ y

∂u

∂y
= 0 .

Solution. If u(x, y) = f(t) and t = x
y

then, by the Chain Rule,

∂u

∂x
= f ′(t)

∂t

∂x
=

1

y
f ′

(
x

y

)
,

∂u

∂y
= f ′(t)

∂t

∂y
= − x

y2
f ′

(
x

y

)
.

Hence,

x
∂u

∂x
+ y

∂u

∂y
= x

1

y
f ′

(
x

y

)
− y

x

y2
f ′

(
x

y

)
= 0 .

2. b) Find function f(t) such that f
(

x
y

)
= u(x, y), where ux

(
x, 1

x

)
= 1

x
and u(1, 1) = 2.

Solution. If u(x, y) = f(t) and t = x
y

then, by the Chain Rule,

∂u

∂x
= f ′(t)

∂t

∂x
=

1

y
f ′

(
x

y

)
.

Therefore,
∂u

∂x

∣∣∣(x, 1
x
) = ux

(
x,

1

x

)
= xf ′(x2) .

On the other hand, it is given that

∂u

∂x

∣∣∣(x, 1
x
) = ux

(
x,

1

x

)
=

1

x
.

Thus, f ′(x2) = 1
x2 , or the same, f(t) is a differentiable function such that f ′(t) = 1

t
for any

t > 0. It follows that f(t) can be taken as f(t) = ln |t| + C, t 6= 0, where C is some constant.
To find C we use

2 = u(1, 1) = f(1) = ln |1|+ C = C.

Therefore, f(t) = ln |t|+ 2.
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3.) Let w(x, y) = f(x− cy), where c is some constant and f ′(0) = 1.

a) Calculate the directional derivative of w at the point (c, 1) in the direction of c~i +~j.

Solution. If w = f(t) and t = x− cy then, by the Chain Rule,

∂w

∂x
= f ′(t)

∂t

∂x
= f ′(t),

∂w

∂x

∣∣
(c,1) = f ′(0) = 1,

and
∂w

∂y
= f ′(t)

∂t

∂y
= −cf ′(t),

∂w

∂y

∣∣
(c,1) = cf ′(0) = −c.

Thus, the gradient of function w(x, y) at (c, 1) is

5w(c, 1) =~i− c~j

and the directional derivative of w at the point (c, 1) in the direction of c~i +~j is

D c~i+~j√
c2+1

w
∣∣
(c,1) = (~i− c~j) ◦

(
c√

c2 + 1
~i +

1√
c2 + 1

~j

)
= 0.

b) Find constant(s) c such that the maximum directional derivative of w at (c, 1) (that is, the
derivative in the direction where w increases most rapidly at (c, 1)) is 7.

Solution. The directional derivative of w is maximum in the direction of 5w(c, 1). Then, the
maximum directional derivative of w at (c, 1) is | 5 w(c, 1)| =

√
1 + c2. It is equal to 7 for

c =
√

48 and c = −√48.
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4. a) A surface S in the xyz-space is given by the equation

x3 + xz2 + yz3 + y2 = 68 .

Find an equation for the tangent plane to S at the point (1, 2, 3).

Solution. The tangent plane is the plane through the point (1, 2, 3) perpendicular to the
gradient of function f(x, y, z) = x3 + xz2 + yz3 + y2 − 68 at the point (1, 2, 3). The gradient is

5f(1, 2, 3) = ((3x2 + z2)~i + (z3 + 2y)~j + (2xz + 3yz2)~k)(1,2,3) = 12~i + 31~j + 60~k.

The tangent plane is therefore

12(x− 1) + 31(y − 2) + 60(z − 3) = 0.

4. b) Find the linearization L(x, y) of the function f(x, y) = sin x cos y at the point

P
(π

4
,
π

4

)
. Then find an upper bound for the magnitude of the error E in the approximation

f(x, y) ≈ L(x, y) over the rectangle

R :
∣∣∣x− π

4

∣∣∣ ≤ 0.2,
∣∣∣y − π

4

∣∣∣ ≤ 0.1 .

Solution. Since

f
(π

4
,
π

4

)
=

1

2
, fx

(π

4
,
π

4

)
= cos x cos y

∣∣∣(π
4
, π
4
) =

1

2
, fy

(π

4
,
π

4

)
= − sin x sin y

∣∣∣(π
4
, π
4
) = −1

2
,

then the linearization of f(x, y) at the point P
(π

4
,
π

4

)
is

L(x, y) =
1

2
+

1

2

(
x− π

4

)
− 1

2

(
y − π

4

)
=

1

2
+

x

2
− y

2
.

We use the inequality

|E(x, y)| ≤ 1

2
M(|x− π

4
|+ |y − π

4
|)2

to estimate an upper bound for the error E(x, y) in the approximation f(x, y) ≈ L(x, y). Since

fxx(x, y) = − sin x cos y, fxy(x, y) = − cos x sin y, fyy(x, y) = − sin x cos y,

then |fxx(x, y)| ≤ 1, |fxy(x, y)| ≤ 1 and |fyy(x, y)| ≤ 1 for any (x, y) ∈ R, that implies that M
can be taken as 1. Therefore, for any (x, y) ∈ R,

|E(x, y)| ≤ 1

2
M(|x− π

4
|+ |y − π

4
|)2 ≤ 1

2
(0.2 + 0.1)2 = 0.045.
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5.) Let f(x, y) = x3 + y3 +3x2− 18y2 +81y +5. Find the critical points of f(x, y), and classify
each point as a local maximum, a local minimum, or a saddle point.

Solution. Since f(x, y) is differentiable in the whole xy-plane then the critical points of function
f(x, y) are points where fx and fy are simultaneously zero. This leads to

fx(x, y) = 3x2 + 6x = 3x(x + 2) = 0,

fy(x, y) = 3y2 − 36y + 81 = 3(y − 3)(y − 9) = 0.

Therefore, the critical points are (0, 3), (0, 9), (−2, 3), (−2, 9).

We have,

fxx(x, y) = 6x + 6 = 6(x + 1), fyy(x, y) = 6y − 36 = 6(y − 6), fxy(x, y) = 0,

and the discriminant

D(x, y) =

∣∣∣∣
fxx fxy

fxy fyy

∣∣∣∣ =

∣∣∣∣
6(x + 1) 0
0 6(y − 6)

∣∣∣∣ = 36(x + 1)(y − 6) .

Point (0, 3): Since D(0, 3) = −108 < 0 then (0, 3) is a saddle point of function f .

Point (0, 9): Since D(0, 9) = 108 > 0 and fxx(0, 9) = 6 > 0 then function f has a local minimum
value at the point (0, 9).

Point (−2, 3): Since D(−2, 3) = 108 > 0 and fxx(−2, 3) = −6 < 0 then function f has a local
maximum value at the point (−2, 3).

Point (−2, 9): Since D(−2, 9) = −108 < 0 then (−2, 9) is a saddle point of function f .


