Date: March 28, 2008, Saturday	NAME:
Γime: 10:000-12:00	
Ali Sinan Sertöz	STUDENT NO:

Math 124 Abstract Mathematics II – Midterm Exam I – Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let L_1 and L_2 be two lines in \mathbb{R}^2 meeting at a point P with an acute angle of θ . Show that a reflection around L_1 , followed by a reflection around L_2 is a rotation. Also find the angle of this rotation.

Solution: Let Q be an arbitrary angle in the plane. Denote the angle QP makes with L_1 by a. Choose your orientation such that a > 0. Reflecting Q around L_1 obtain the point Q'. Now the angle Q'P makes with L_2 , which we denote by b may be negative with respect to your chosen orientation. This depends on the relative positions of Q, L_1 and L_2 . Now standard arguments show that the total effect of these two reflections is a rotation around P with an angle of 2θ .

The important part in this easy exercise is to be aware of all possible cases some of which give negative b as opposed to the obvious geometric figure one is tempted to draw at first impulse.

- **Q-2)** Let S^2 be the unit sphere in \mathbb{R}^3 centered at the origin O, and let d(-,-) denote the spherical metric. Consider the spherical triangle ΔPQR on S^2 where $d(P,Q) = \beta$, $d(P,R) = \gamma$, $d(R,Q) = \alpha$ and the dihedral angle between the planes of POQ and POR is a. Assume without loss of generality that P = (1,0,0) and Q = (?,0,?).
 - (i) Find the coordinates of Q and R.
 - (ii) Prove the identity $\cos \alpha = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos \alpha$.
 - (iii) Show that $\alpha \leq \beta + \gamma$.

Solution: Since Q lies in the xz-plane and OQ makes an angle of β with OP = (1, 0, 0), the coordinates of Q are easily seen to be

$$Q = (\cos \beta, 0, \sin \beta).$$

To find the coordinates of R, for the sake of drawing a figure, assume that R lies in the first octant. Drop perpendiculars from R to all three coordinate planes and mark the known angles. An easy trigonometry will give

$$R = (\cos \gamma, \sin \gamma \sin a, \sin \gamma \cos a).$$

We note that |OQ| = OR| = 1 and the angle between them is α . Hence $\vec{OQ} \cdot \vec{OR} = \cos \alpha$, giving us

$$\cos \alpha = \cos \beta \, \cos \gamma + \sin \beta \, \sin \gamma \, \cos a.$$

Now we observe that $-1 \le \cos a \le 1$, so

$$\cos \alpha \ge \cos \beta \cos \gamma - \sin \beta \sin \gamma = \cos(\beta + \gamma).$$

Since cos is a decreasing function, we finally get

$$\alpha \leq \beta + \gamma$$
.

- **Q-3)** Let $\phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a positive definite symmetric bilinear form.
 - (i) Show that $|\phi(u,v)|^2 \le \phi(u,u) \phi(v,v)$ for all $u,v \in \mathbb{R}^n$.
 - (ii) Show that $d(u,v) = \sqrt{\phi(u-v,u-v)}$ defines a metric on \mathbb{R}^n .

Solution: The first part is the famous Cauchy-Schwarz inequality for which numerous proofs are available. Here is one.

For any $u, v \in \mathbb{R}^n$ and any $\lambda \in \mathbb{R}$, we must have

$$\phi(\lambda u + v, \lambda u + v) \ge 0$$

since ϕ is positive definite. We can now expand the left hand side using bilinearity of ϕ to obtain

$$[\phi(u, u)]\lambda^2 + [2\phi(u, v)]\lambda + [\phi(v, v)] \ge 0.$$

Since this holds for all $\lambda \in \mathbb{R}$, the discriminant of the quadratic expression must be non-positive, which in turn is equivalent to

$$|\phi(u,v)|^2 \le \phi(u,u)\,\phi(v,v).$$

It is clear that $d(u, v) \ge 0$ with equality holding if and only if u = v. It is equally clear that d(u, v) = d(v, u). It remains to establish the triangle inequality.

Let $u, v, w \in \mathbb{R}^n$. Then

$$(d(u,w) + d(w,v)) = \phi(u - w, u - w) + 2\sqrt{\phi(u - w, u - w)\phi(w - v, w - v)} + \phi(w - v, w - v)$$

$$\geq \phi(u - w, u - w) + 2\phi(u - w, w - v) + \phi(w - v, w - v)$$

$$= \phi(u, u) - 2\phi(u, v) + \phi(v, v)$$

$$= \phi(u - v, u - v)$$

$$= d(u, v),$$

where in the second line we used the Cauchy-Schwarz inequality and in the following lines we used the bilinearity of ϕ . This establishes the triangle inequality.

- Q-4) Let \mathcal{H}^2 be the hyperbolic plane in the (t, x, y) space given by the equation $-t^2 + x^2 + y^2 = -1$. Let L_1 and L_2 be two lines in \mathcal{H}^2 . In each of the following cases decide if a common perpendicular exists for the lines L_1 and L_2 . When it exists describe how to construct it.
 - (i) L_1 and L_2 are diverging.
 - (ii) L_1 and L_2 are ultraparallel.
 - (iii) L_1 and L_2 are intersecting.

Solution: Let $L_1 = \pi_1 \cap \mathcal{H}^2$ and $L_2 = \pi_2 \cap \mathcal{H}^2$ where π_1 and π_2 are two planes in \mathbb{R}^3 passing through the origin.

Let $V = \pi_1 \cap \pi_2$ be the line of intersection of these two planes and let π be the plane through the origin in \mathbb{R}^3 perpendicular to the line V.

If $L = \pi \cap \mathcal{H}^2 \neq \emptyset$, then L is the line in \mathcal{H}^2 orthogonal to both L_1 and L_2 .

In the given three cases we check if $L = \emptyset$ or not.

- (i) If L_1 and L_2 diverge, then V is outside the light cone so π intersects \mathcal{H}^2 and L is the required common perpendicular.
- (ii) In this case the line V is on the light cone and hence π intersects the light cone along a line which does not intersect \mathcal{H}^2 . But in this case, since π touches the light cone, we say that L is perpendicular to L_1 and L_2 at infinity, to summarize this relative positions of the lines involved.
- (iii) In this case the line V intersects \mathcal{H}^2 , at the point where L_1 and L_2 intersect each other. Then π does not intersect \mathcal{H}^2 .