MATH 202 Complex Analysis

 Homework 1

 Homework 1
 Solution Key

Show your work in reasonable detail. It is important that you explain your solution in a convincing way. The grader can but will not do mind reading!

1) Calculate the following and give your answer in rectangular form $a+i b$ where a and b are real numbers.
(a) All cubic roots of i.
(b) $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2021}$.

Solution:

Note that $\exp (i \pi / 3)=\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$.
Therefore $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2021}=\exp (i 2021 \pi / 3)=\exp \left(i\left[673 \pi+\frac{2 \pi}{3}\right]\right)=\exp (i 673 \pi) \exp \left(\frac{i 2 \pi}{3}\right)=$ $(-1)\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=\frac{1}{2}-i \frac{\sqrt{3}}{2}$.
2) Let $f(z)=u(x, y)+i v(x, y)$ be an entire function and let c_{1}, c_{2} be two real numbers. Assume that the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ intersect at a point $z_{0}=x_{0}+i y_{0}$. Show that these two curves intersect at z_{0} at right angles if $f^{\prime}\left(z_{0}\right) \neq 0$.

Solution:

Let y_{1} be the curve implicitly defined around z_{0} by the equation $u\left(x, y_{1}\right)=c_{1}$. Similarly let y_{2} be such that $v\left(x, y_{2}\right)=c_{2}$.

By chain rule we have at z_{0}

$$
\begin{aligned}
& u_{x}+u_{y} y_{1}^{\prime}=0 \\
& v_{x}+v_{y} y_{2}^{\prime}=0 .
\end{aligned}
$$

First assume that $u_{y}\left(z_{0}\right) \neq 0$ and $v_{y}\left(z_{0}\right) \neq 0$. Then at z_{0} we will have

$$
y_{1}^{\prime}=-\frac{u_{x}}{u_{y}}, y_{2}^{\prime}=-\frac{v_{x}}{v_{y}}, y_{1}^{\prime} y_{2}^{\prime}=\frac{u_{x}}{u_{y}} \frac{v_{x}}{v_{y}}=-1,
$$

where the last equality follows from the Cauchy-Riemann equations.
Now suppose at z_{0} we have $u_{y}=0$. Then by Cauchy-Riemann equations we also have $v_{x}=0$.

Since $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}=(1 / i)\left(u_{y}+i v_{y}\right) \neq 0$, we must have $v_{y} \neq 0$ and $u_{x} \neq 0$. But $y_{2}^{\prime}=$ $-\left(v_{x} / v_{y}\right)=0$ since $v_{x}=0$. And from $u_{x}+u_{y} y_{1}^{\prime}=0$ we must have $y_{1}^{\prime}= \pm \infty$ since $u_{x} \neq 0$. Hence the given level curves are again perpendicular, one being horizontal, the other vertical. Similarly if $v_{y}=0$ at z_{0}.
3) Let $f(z)$ be analytic at z_{0}, and $g(z)$ be analytic at $w_{0}=f\left(z_{0}\right)$. Show that $(g \circ f)(\mathrm{z})$ is analytic at z_{0} and moreover show that $(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(w_{0}\right) f^{\prime}\left(z_{0}\right)$.

Solution:

First assume that f is constant. Then $g \circ f$ is also constant hence trivially analytic everywhere and the required identity of the derivatives holds as both sides are now zero.

Now assume that f is not constant. Then the zero set of f has no accumulation point. In particular there is an open neighborhood U of z_{0} such taht for all $z \in U, z \neq z_{0}$, we have $f(z)-f\left(z_{0}\right) \neq 0$.

Now we can try to see if $g \circ f$ has a derivative at z_{0}.

$$
\begin{aligned}
(g \circ f)^{\prime}\left(z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{(g \circ f)(z)-(g \circ f)\left(z_{0}\right)}{z-z_{0}} \\
& =\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}} \\
& =\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{f(z)-f\left(z_{0}\right)} \lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
& =g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right) .
\end{aligned}
$$

Observe that for the limit of g^{\prime} to make sense the denominator should never vanish unless $z=z_{0}$. This we guaranteed by taking f as a non-constant analytic function.

Now the above argument will work at every $z_{1} \in U$ showing that $(g \circ f)^{\prime}$ exists on U, hence $g \circ f$ is analytic at z_{0}.
4) Consider the images of the hyperbolas $x^{2}-y^{2}= \pm c^{2}$ under the mapping $f(z)=z^{2}$, where $c>0$. Show that you have two sheets on the image and show how these sheets are glued together so that f becomes one-to-one and onto this new surface.

Solution:

The map is $z \mapsto z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$. The following figures are self explanatory.

$$
\begin{aligned}
& x^{2}-y^{2}=c^{2}, A \\
& \text { I: } \begin{array}{ll}
x=c \cosh t & u=c^{2} \\
y=c \sinh t & v=c^{2} \sinh 2 t
\end{array} \\
& \text { II: } \quad \begin{array}{ll}
x=c \sinh t & u=-c^{2} \\
y=c \cosh t & v=c^{2} \sinh 2 t
\end{array} \\
& \text { III: } \\
& \begin{array}{ll}
x=-c \cosh t & u=c^{2} \\
y=-c \sinh t & v=c^{2} \sinh 2 t
\end{array} \\
& \text { IV: } \\
& x=-c \sinh t \quad u=-c^{2} \\
& y=-c \cosh t \quad v=c^{2} \sinh 2 t
\end{aligned}
$$

\rightarrow means we move in this direction as $t>0$ and $t \rightarrow \infty$
\rightarrow means we more in this direction as $t 20$ and $t \rightarrow-\infty$.

5) Calculate the principal value of $\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{i}$.

Solution:

$$
\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{i}=\exp (-i \pi / 3)^{i}=\exp \left(-i^{2} \pi / 3\right)=\exp (\pi / 3) .
$$

