
MATH 202 Complex Analysis
Homework 2
Solution Key

1) Evaluate the integral
∫ ∞

0

(
1

x
− 1

sinhx

)
dx

x
.

Solution:
Consider the function f(z) =

1

z2
− 1

z sinh z
and the following path γN where N > 0 is an integer.

y

x
−N N

(N, π(1
2
+ 2N) )(−N, π(1

2
+ 2N) )

AN

CN

BN

γN = [−N,N ] + AN +BN + CN

The residue theory says that∫
γN

f(z) dz = (2πi)(sum of the residues of f inside the path.)

Before starting our analysis we refresh our minds about some identities.

sinh(x+ iy) = sinh x cos y + i coshx sin y
cosh(x+ iy) = cosh x cos y + i sinhx sin y
| sinh(x+ iy)|2 = sinh2 x+ sin2 y ≥ sinh2 x, or simply | sinh(x+ iy)| ≥ sinhx
| cosh(x+ iy)|2 = sinh2 x+ cos2 y ≥ sinh2 x, or simply | cosh(x+ iy)| ≥ sinhx.

Now we start calculating the residues of f .

First we observe that z = 0 is a removable singularity for f(z) =
1

z2
− 1

z sinh z
=

sinh z − z

z2 sinh z
. Since

sinh z = z +
z3

3!
+

z5

5!
+ · · · ,



we have

f(z) =
sinh z − z

z2 sinh z
=

z3

3!
+ z5

5!
+ · · ·

z3 + z5

3!
+ z7

5!
+ · · ·

=
1
3!
+ z2

5!
+ · · ·

1 + z2

3!
+ z4

5!
+ · · ·

,

showing that f can be defined at 0 as 1
6
. Hence there is no singularity at z = 0.

Hence we are interested only with the zeros of sinh(x+ iy) with 0 < y < π(
1

2
+ 2N).

Using the identities given at the beginning we find that the only poles of f inside γN are

zn = nπi, n = 1, 2, . . . , 2N.

Writing

f(z) =
sinh z−z

z2

sinh z
we see that

Resz=zn f(z) =
sinh z−z

z2

cosh z

∣∣∣∣∣
z=zn

=
i

π

(−1)n

n
.

Thus we get

(2πi)(sum of the residues of f inside the path.) = 2

[
−

2N∑
n=1

(−1)n

n

]
.

Now we examine the integral of f along the parts of γN .

• On [−N,N ]: z = x and ∫
[−N,N ]

f(z) dz = 2

∫ N

0

f(x) dx,

since f(x) is an even function.

• On AN and CN : Let LN denote AN or CN .
On LN we have z = ±N + it, where 0 ≤ t ≤ π(1

2
+ 2N), and

|z| ≥ N, |LN | = π(
1

2
+ 2N).

Moreover, using the identities given at the beginning we have

| sinh z| ≥ sinhN ≥ N, and hence |z sinh z| ≥ N2.

Thus ∣∣∣∣∫
LN

f(z) dz

∣∣∣∣ ≤ ∣∣∣∣∫
LN

dz

z2

∣∣∣∣+ ∣∣∣∣∫
LN

dz

z sinh z

∣∣∣∣ ≤ 2
π(1

2
+ 2N)

N2
→ 0 as N → ∞.

• On BN : Here z = x + iπ(1
2
+ 2N), where −N ≤ x ≤ N . In particular sinh(x + iπ(1

2
+ 2N)) =

coshx. Thus |z| ≥ N and |z sinh z| ≥ N coshx. We then have∣∣∣∣∫
BN

f(z) dz

∣∣∣∣ ≤
∣∣∣∣∫

BN

dz

z2

∣∣∣∣+ ∣∣∣∣∫
BN

dz

z sinh z

∣∣∣∣
≤ 2N

N2
+

1

N

∫ N

−N

dx

coshx

=
2

N
+

1

N

(
2 arctan(ex)

∣∣∣N
−N

)
.



The last equality can be verified easily by taking the derivative of arctan(ex). Moreover we have

lim
N→∞

arctan(eN) =
π

2
and lim

N→∞
arctan(e−N) = 0.

This shows that
lim

N→∞

∫
BN

f(z) dz = 0.

Putting these together and taking the limit as N → ∞ we get

2

∫ ∞

0

(
1

x
− 1

sinhx

)
dx

x
= 2

[
−

∞∑
n=1

(−1)n

n

]
.

We recognize the above infinite sum as ln 2, and finally get∫ ∞

0

(
1

x
− 1

sinhx

)
dx

x
= ln 2.



2) Evaluate the integral
∫ ∞

0

cos ax− cos bx

x2
dx, where a, b ≥ 0.

Solution:

Use the contour γρ,R given below with the function f(z) =
eiaz − eibz

z2
.

CR

Cρ

L2 L1

−R −ρ ρ R

γρ,R = L1 + CR + L2 + Cρ

f has no poles inside the contour so we have∫
γρ,R

f(z) dz = 0.

We then examine the Laurent expansion of f at z = 0.

f(z) =
(1 + iaz

1!
+ (iaz)2

2!
+ (iaz)3

3!
+ · · · )− (1 + ibz

1!
+ (ibz)2

2!
+ (ibz)3

3!
+ · · · )

z2

=
i(a− b)

z
+

(ia)2 − (ib)2

2!
+

(ia)3 − (ib)3

3!
z + · · · .

Thus z = 0 is a simple pole of f with residue i(a− b).

• On Cρ: The above information immediately gives, via the useful lemma, that

lim
ρ→0

∫
Cρ

f(z) dz = (−πi)(i(a− b)) = π(a− b).

We then examine the behavior of the integral along the other portions of the contour.

• On CR: Here |z| = R, and z = x+ iy with y ≥ 0. Then

|f(z)| ≤
|eiaz|+

∣∣eibz∣∣
|z|2

=
e−ay + e−by

R2
≤ 2

R2
,

and hence ∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ 2

R2
πR → 0 as R → ∞.



• On L1: Here z = x with ρ ≤ x ≤ R.∫
L1

f(z) dz =

∫ R

ρ

eiax − eibx

x2
dx.

• On −L2: Here z = −x with ρ ≤ x ≤ R. Then dz = −dx.∫
L2

f(z) dz = −
∫
−L2

f(z) dz =

∫ R

ρ

e−iax − e−ibx

x2
dx.

Thus we get ∫
L1

f(z) dz +

∫
L2

f(z) dz = 2

∫ R

ρ

cos ax− cos bx

x2
dx.

Putting these in and taking the limit as ρ → 0 and R → ∞ we get

2

∫ ∞

0

cos ax− cos bx

x2
dx+ π(b− a) = 0,

giving us finally ∫ ∞

0

cos ax− cos bx

x2
dx =

π

2
(b− a), a, b ≥ 0.



3) Evaluate the integral
∫ ∞

0

sin2 x

x2
dx.

Solution:

An acceptable and a very easy solution to this problem is to use the result of the previous problem.∫ ∞

0

cos ax− cos bx

x2
dx =

π

2
(b− a), a, b ≥ 0.

Here put a = 0 and b = 2 to get∫ ∞

0

1− cos 2x

x2
dx = 2

∫ ∞

0

sin2 x

x2
dx = π,

and hence the result ∫ ∞

0

sin2 x

x2
dx =

π

2
.

However we may want to do this the hard way. Then we recall the half angle formula that 2 sin2 x =
1− cos 2x and decide to use the function

f(z) =
1− ei2z

z2

on the contour

CR

Cρ

L2 L1

−R −ρ ρ R

γρ,R = L1 + CR + L2 + Cρ

We first observe that
f(z) =

−2i

z
+ 2 +

4i

3
z − 2

3
z2 + · · · ,

so f(z) has a simple pole at z = 0 with residue B0 = −2i.

• On Cρ: By the useful lemma we see that

lim
ρ→0

∫
Cρ

f(z) dz = −πiB0 = −πi(−2i) = −2π.

• On CR: z = Reiθ = R cos θ + i sin θ, 0 ≤ θ ≤ π, dz = Rieiθdθ. Then∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ = ∣∣∣∣∫ π

0

1− eiR cos θe−R sin θ

R2ei2θ
Rieiθ dθ

∣∣∣∣ ≤ π

R
+

1

R

∫ π

0

e−R sin θ dθ → 0 as R → ∞.



• On L1: z = x, ρ ≤ x ≤ R, and∫
L1

f(z) dz =

∫ R

ρ

1− ei2x

x2
dx = 2

∫ R

ρ

sin2 x

x2
dx− i

∫ R

ρ

sin 2x

x2
dx.

• On −L2: z = −x, ρ ≤ x ≤ R, dz = −dx, and∫
L2

f(z) dz = −
∫
−L2

f(z) dz =

∫ R

ρ

1− e−i2x

x2
dx = 2

∫ R

ρ

sin2 x

x2
dx+ i

∫ R

ρ

sin 2x

x2
dx.

Putting these together and taking the limits as ρ → 0 and R → ∞ we get

4

∫ ∞

0

sin2 x

x2
dx− 2π = 0,

or ∫ ∞

0

sin2 x

x2
dx =

π

2
.



4) Evaluate the integral
∫ ∞

0

sinx2 dx.

Solution:

Use the function f(z) = eiz
2 together with the contour given below.

L1

CRL2

γR = L1 + CR + L2

π
4

x

y

There are no poles of f(z) inside the contour so we have∫
γR

f(z) dz = 0.

• On L1: z = x, 0 ≤ x ≤ R and∫
L1

f(z) dz =

∫ R

0

eix
2

dx =

∫ R

0

cosx2 dx+ i

∫ R

0

sinx2 dx.

• On −L2: z = αx, 0 ≤ x ≤ R and dz = αdx where α =
1√
2
+ i

1√
2

. Note that α2 = i so z2 = ix2.

Then we have∫
L2

f(z) dz = −
∫
−L2

f(z) dz = −α

∫ R

0

e−x2

dx → −α

√
π

2
as R → ∞ (from Calculus)

• On CR: z = Reiθ, 0 ≤ θ ≤ π/4, dz = Rieiθdθ, z2 = R2ei2θ = R2 cos 2θ + iR2 sin 2θ. Then∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
∫ π/4

0

eiR
2 cos 2θe−R2 sin 2θiReiθdθ

∣∣∣∣∣ ≤ R

∫ π/4

0

e−R2 sin 2θdθ

=
R

2

∫ π/2

0

e−R2 sin tdt ≤ R

2

π

2R2
→ 0 as R → ∞.

Putting these together and taking the limit as R → ∞ we get∫ ∞

0

cosx2 dx+ i

∫ ∞

0

sinx2 dx− α

√
π

2
= 0.



Equating real and imaginary parts separately we finally obtain∫ ∞

0

cosx2 dx =

∫ ∞

0

sinx2 dx =

√
π

2
√
2
.


