MATH 202 Complex Analysis

Homework 2

Solution Key

1) Evaluate the integral $\int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{\sinh x}\right) \frac{d x}{x}$.

Solution:

Consider the function $f(z)=\frac{1}{z^{2}}-\frac{1}{z \sinh z}$ and the following path γ_{N} where $N>0$ is an integer.

$$
\gamma_{N}=[-N, N]+A_{N}+B_{N}+C_{N}
$$

The residue theory says that

$$
\int_{\gamma_{N}} f(z) d z=(2 \pi i) \text { (sum of the residues of } f \text { inside the path.) }
$$

Before starting our analysis we refresh our minds about some identities.

$$
\begin{aligned}
& \sinh (x+i y)=\sinh x \cos y+i \cosh x \sin y \\
& \cosh (x+i y)=\cosh x \cos y+i \sinh x \sin y \\
& |\sinh (x+i y)|^{2}=\sinh ^{2} x+\sin ^{2} y \geq \sinh ^{2} x, \text { or } \operatorname{simply}|\sinh (x+i y)| \geq \sinh x \\
& |\cosh (x+i y)|^{2}=\sinh ^{2} x+\cos ^{2} y \geq \sinh ^{2} x, \text { or simply }|\cosh (x+i y)| \geq \sinh x
\end{aligned}
$$

Now we start calculating the residues of f.
First we observe that $z=0$ is a removable singularity for $f(z)=\frac{1}{z^{2}}-\frac{1}{z \sinh z}=\frac{\sinh z-z}{z^{2} \sinh z}$. Since

$$
\sinh z=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots
$$

we have

$$
f(z)=\frac{\sinh z-z}{z^{2} \sinh z}=\frac{\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots}{z^{3}+\frac{z^{5}}{3!}+\frac{z^{7}}{5!}+\cdots}=\frac{\frac{1}{3!}+\frac{z^{2}}{5!}+\cdots}{1+\frac{z^{2}}{3!}+\frac{z^{4}}{5!}+\cdots},
$$

showing that f can be defined at 0 as $\frac{1}{6}$. Hence there is no singularity at $z=0$.
Hence we are interested only with the zeros of $\sinh (x+i y)$ with $0<y<\pi\left(\frac{1}{2}+2 N\right)$.
Using the identities given at the beginning we find that the only poles of f inside γ_{N} are

$$
z_{n}=n \pi i, n=1,2, \ldots, 2 N
$$

Writing

$$
f(z)=\frac{\frac{\sinh z-z}{z^{2}}}{\sinh z}
$$

we see that

$$
\operatorname{Res}_{z=z_{n}} f(z)=\left.\frac{\frac{\sinh z-z}{z^{2}}}{\cosh z}\right|_{z=z_{n}}=\frac{i}{\pi} \frac{(-1)^{n}}{n} .
$$

Thus we get

$$
(2 \pi i)\left(\text { sum of the residues of } f \text { inside the path.) }=2\left[-\sum_{n=1}^{2 N} \frac{(-1)^{n}}{n}\right]\right.
$$

Now we examine the integral of f along the parts of γ_{N}.

- On $[-N, N]: z=x$ and

$$
\int_{[-N, N]} f(z) d z=2 \int_{0}^{N} f(x) d x
$$

since $f(x)$ is an even function.

- On A_{N} and C_{N} : Let L_{N} denote A_{N} or C_{N}.

On L_{N} we have $z= \pm N+i t$, where $0 \leq t \leq \pi\left(\frac{1}{2}+2 N\right)$, and

$$
|z| \geq N,\left|L_{N}\right|=\pi\left(\frac{1}{2}+2 N\right)
$$

Moreover, using the identities given at the beginning we have

$$
|\sinh z| \geq \sinh N \geq N, \text { and hence }|z \sinh z| \geq N^{2} .
$$

Thus

$$
\left|\int_{L_{N}} f(z) d z\right| \leq\left|\int_{L_{N}} \frac{d z}{z^{2}}\right|+\left|\int_{L_{N}} \frac{d z}{z \sinh z}\right| \leq 2 \frac{\pi\left(\frac{1}{2}+2 N\right)}{N^{2}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- On B_{N} : Here $z=x+i \pi\left(\frac{1}{2}+2 N\right)$, where $-N \leq x \leq N$. In particular $\sinh \left(x+i \pi\left(\frac{1}{2}+2 N\right)\right)=$ $\cosh x$. Thus $|z| \geq N$ and $|z \sinh z| \geq N \cosh x$. We then have

$$
\begin{aligned}
\left|\int_{B_{N}} f(z) d z\right| & \leq\left|\int_{B_{N}} \frac{d z}{z^{2}}\right|+\left|\int_{B_{N}} \frac{d z}{z \sinh z}\right| \\
& \leq \frac{2 N}{N^{2}}+\frac{1}{N} \int_{-N}^{N} \frac{d x}{\cosh x} \\
& =\frac{2}{N}+\frac{1}{N}\left(\left.2 \arctan \left(e^{x}\right)\right|_{-N} ^{N}\right) .
\end{aligned}
$$

The last equality can be verified easily by taking the derivative of $\arctan \left(e^{x}\right)$. Moreover we have

$$
\lim _{N \rightarrow \infty} \arctan \left(e^{N}\right)=\frac{\pi}{2} \text { and } \lim _{N \rightarrow \infty} \arctan \left(e^{-N}\right)=0
$$

This shows that

$$
\lim _{N \rightarrow \infty} \int_{B_{N}} f(z) d z=0
$$

Putting these together and taking the limit as $N \rightarrow \infty$ we get

$$
2 \int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{\sinh x}\right) \frac{d x}{x}=2\left[-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\right]
$$

We recognize the above infinite sum as $\ln 2$, and finally get

$$
\int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{\sinh x}\right) \frac{d x}{x}=\ln 2 .
$$

2) Evaluate the integral $\int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x$, where $a, b \geq 0$.

Solution:

Use the contour $\gamma_{\rho, R}$ given below with the function $f(z)=\frac{e^{i a z}-e^{i b z}}{z^{2}}$.

f has no poles inside the contour so we have

$$
\int_{\gamma_{\rho, R}} f(z) d z=0
$$

We then examine the Laurent expansion of f at $z=0$.

$$
\begin{aligned}
f(z) & =\frac{\left(1+\frac{i a z}{1!}+\frac{(i a z)^{2}}{2!}+\frac{(i a z)^{3}}{3!}+\cdots\right)-\left(1+\frac{i b z}{1!}+\frac{(i b z)^{2}}{2!}+\frac{(i b z)^{3}}{3!}+\cdots\right)}{z^{2}} \\
& =\frac{i(a-b)}{z}+\frac{(i a)^{2}-(i b)^{2}}{2!}+\frac{(i a)^{3}-(i b)^{3}}{3!} z+\cdots .
\end{aligned}
$$

Thus $z=0$ is a simple pole of f with residue $i(a-b)$.

- On C_{ρ} : The above information immediately gives, via the useful lemma, that

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=(-\pi i)(i(a-b))=\pi(a-b)
$$

We then examine the behavior of the integral along the other portions of the contour.

- On C_{R} : Here $|z|=R$, and $z=x+i y$ with $y \geq 0$. Then

$$
|f(z)| \leq \frac{\left|e^{i a z}\right|+\left|e^{i b z}\right|}{|z|^{2}}=\frac{e^{-a y}+e^{-b y}}{R^{2}} \leq \frac{2}{R^{2}}
$$

and hence

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \frac{2}{R^{2}} \pi R \rightarrow 0 \text { as } R \rightarrow \infty
$$

- On L_{1} : Here $z=x$ with $\rho \leq x \leq R$.

$$
\int_{L_{1}} f(z) d z=\int_{\rho}^{R} \frac{e^{i a x}-e^{i b x}}{x^{2}} d x
$$

- On $-L_{2}$: Here $z=-x$ with $\rho \leq x \leq R$. Then $d z=-d x$.

$$
\int_{L_{2}} f(z) d z=-\int_{-L_{2}} f(z) d z=\int_{\rho}^{R} \frac{e^{-i a x}-e^{-i b x}}{x^{2}} d x
$$

Thus we get

$$
\int_{L_{1}} f(z) d z+\int_{L_{2}} f(z) d z=2 \int_{\rho}^{R} \frac{\cos a x-\cos b x}{x^{2}} d x
$$

Putting these in and taking the limit as $\rho \rightarrow 0$ and $R \rightarrow \infty$ we get

$$
2 \int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x+\pi(b-a)=0
$$

giving us finally

$$
\int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x=\frac{\pi}{2}(b-a), a, b \geq 0
$$

3) Evaluate the integral $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$.

Solution:

An acceptable and a very easy solution to this problem is to use the result of the previous problem.

$$
\int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x=\frac{\pi}{2}(b-a), a, b \geq 0
$$

Here put $a=0$ and $b=2$ to get

$$
\int_{0}^{\infty} \frac{1-\cos 2 x}{x^{2}} d x=2 \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi
$$

and hence the result

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

However we may want to do this the hard way. Then we recall the half angle formula that $2 \sin ^{2} x=$ $1-\cos 2 x$ and decide to use the function

$$
f(z)=\frac{1-e^{i 2 z}}{z^{2}}
$$

on the contour

We first observe that

$$
f(z)=\frac{-2 i}{z}+2+\frac{4 i}{3} z-\frac{2}{3} z^{2}+\cdots
$$

so $f(z)$ has a simple pole at $z=0$ with residue $B_{0}=-2 i$.

- On C_{ρ} : By the useful lemma we see that

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=-\pi i B_{0}=-\pi i(-2 i)=-2 \pi
$$

- On $C_{R}: z=R e^{i \theta}=R \cos \theta+i \sin \theta, 0 \leq \theta \leq \pi, d z=R i e^{i \theta} d \theta$. Then

$$
\left|\int_{C_{R}} f(z) d z\right|=\left|\int_{0}^{\pi} \frac{1-e^{i R \cos \theta} e^{-R \sin \theta}}{R^{2} e^{i 2 \theta}} R i e^{i \theta} d \theta\right| \leq \frac{\pi}{R}+\frac{1}{R} \int_{0}^{\pi} e^{-R \sin \theta} d \theta \rightarrow 0 \text { as } R \rightarrow \infty
$$

- On $L_{1}: z=x, \rho \leq x \leq R$, and

$$
\int_{L_{1}} f(z) d z=\int_{\rho}^{R} \frac{1-e^{i 2 x}}{x^{2}} d x=2 \int_{\rho}^{R} \frac{\sin ^{2} x}{x^{2}} d x-i \int_{\rho}^{R} \frac{\sin 2 x}{x^{2}} d x
$$

- On $-L_{2}: z=-x, \rho \leq x \leq R, d z=-d x$, and

$$
\int_{L_{2}} f(z) d z=-\int_{-L_{2}} f(z) d z=\int_{\rho}^{R} \frac{1-e^{-i 2 x}}{x^{2}} d x=2 \int_{\rho}^{R} \frac{\sin ^{2} x}{x^{2}} d x+i \int_{\rho}^{R} \frac{\sin 2 x}{x^{2}} d x
$$

Putting these together and taking the limits as $\rho \rightarrow 0$ and $R \rightarrow \infty$ we get

$$
4 \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x-2 \pi=0
$$

or

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

4) Evaluate the integral $\int_{0}^{\infty} \sin x^{2} d x$.

Solution:

Use the function $f(z)=e^{i z^{2}}$ together with the contour given below.

There are no poles of $f(z)$ inside the contour so we have

$$
\int_{\gamma_{R}} f(z) d z=0
$$

- On $L_{1}: z=x, 0 \leq x \leq R$ and

$$
\int_{L_{1}} f(z) d z=\int_{0}^{R} e^{i x^{2}} d x=\int_{0}^{R} \cos x^{2} d x+i \int_{0}^{R} \sin x^{2} d x
$$

- On $-L_{2}: z=\alpha x, 0 \leq x \leq R$ and $d z=\alpha d x$ where $\alpha=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$. Note that $\alpha^{2}=i$ so $z^{2}=i x^{2}$. Then we have

$$
\int_{L_{2}} f(z) d z=-\int_{-L_{2}} f(z) d z=-\alpha \int_{0}^{R} e^{-x^{2}} d x \rightarrow-\alpha \frac{\sqrt{\pi}}{2} \text { as } R \rightarrow \infty \quad \text { (from Calculus) }
$$

- On $C_{R}: z=R e^{i \theta}, 0 \leq \theta \leq \pi / 4, d z=R i e^{i \theta} d \theta, z^{2}=R^{2} e^{i 2 \theta}=R^{2} \cos 2 \theta+i R^{2} \sin 2 \theta$. Then

$$
\begin{aligned}
\left|\int_{C_{R}} f(z) d z\right|=\left|\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta} e^{-R^{2} \sin 2 \theta} i R e^{i \theta} d \theta\right| & \leq R \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} d \theta \\
& =\frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin t} d t \leq \frac{R}{2} \frac{\pi}{2 R^{2}} \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Putting these together and taking the limit as $R \rightarrow \infty$ we get

$$
\int_{0}^{\infty} \cos x^{2} d x+i \int_{0}^{\infty} \sin x^{2} d x-\alpha \frac{\sqrt{\pi}}{2}=0
$$

Equating real and imaginary parts separately we finally obtain

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}}
$$

