
MATH 202 Complex Analysis
Homework 3
Solution Key

1) Let ϕN be the stereographic projection of the Riemann sphere S = {(x1, x2, x3) ∈ R3 | x2
1 + x2

2 +
x2
3 = 1} onto the complex plane x3 = 0, (z = x1 + ix3). Let Mθ be the rotation of S around the

x1-axis, where −π < θ ≤ π. Show that

ϕN ◦Mθ ◦ ϕ−1
N (z) =


z + i(tan θ

2
)

i(tan θ
2
)z + 1

−π < θ < π

1

z
θ = π,

where the second stereographic projection is with respect to the new North pole of the sphere after
the rotation by θ.

Solution:
We set for ease of notation z = x+ iy. We use the following stereographic projection formulas.

ϕN(U, V,W ) =

(
U

1−W
,

V

1−W

)
and ϕ−1

N (z) =

(
2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

For any θ we have

Mθ(U, V,W ) = (U, V cos θ −W sin θ, V sin θ +W cos θ).

If we set
w(z) = ϕN ◦Mθ ◦ ϕ−1

N (z) = X + iY,

then we have

X + iY =

(
2x

|z|2 + 1− 2y sin θ − |z|2 cos θ + cos θ
,

2y cos θ − |z|2 sin θ + sin θ

|z|2 + 1− 2y sin θ − |z|2 cos θ + cos θ

)
.

We want to find a, b, c, d ∈ C such that

X + iY =
az + b

cz + d
=

az + b

cz + d
· c̄z̄ + d̄

c̄z̄ + d̄
=

ac̄|z|2 + ad̄z + bc̄z̄ + bd̄

cc̄|z|2 + cd̄z + c̄dz̄ + dd̄

We now need to solve the following system for the unknowns a, b, c, d for all z ∈ C.

|z|2 + 1− 2y sin θ − |z|2 cos θ + cos θ = cc̄|z|2 + cd̄z + c̄dz̄ + dd̄

2x = Re(ac̄|z|2 + ad̄z + bc̄z̄ + bd̄)

2y cos θ − |z|2 sin θ + sin θ = Im(ac̄|z|2 + ad̄z + bc̄z̄ + bd̄)

At this point it helps if you set a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, d = d1 + id2 and search for
the real unknowns a1, a2, b1, b2, c1, c2, d1, d2.

We find the following solutions:

a1 = −
√
2 cos

θ

2
, a2 = 0, b1 = 0, b2 = −

√
2 sin

θ

2

c1 = 0, c2 =
√
2 sin

θ

2
, d1 = −

√
2 cos

θ

2
, d2 = 0.



Thus we obtain the following Mobius transformation.

w(z) =
(−

√
2 cos θ

2
)z + (−i

√
2 sin θ

2
)

(−i
√
2 sin θ

2
)z + (

√
2 cos θ

2
)

When θ ̸= π we can divide each coefficient by the non-zero value −
√
2 cos θ

2
to obtain

w(z) =
z + i(tan θ

2
)

i(tan θ
2
)z + 1

, when − π < θ < π.

When θ = π, the Mobius transformation w(z) becomes

w(z) =
1

z
, when θ = π.



2) Let z1, z2, z3, z4 be four distinct points in C. Let T (z) = (z, z2; z3, z4) be the cross-ratio morphism.
For any k ∈ C, can you find a Mobius transformation w such that w(z1) = k, w(z2) = −k, w(z3) = 1,
w(z4) = −1? Can k be equal to i?

Solution:
Let t ∈ C be a complex number such that t2 = T (z1. Note t ̸= 0, 1.

When t ̸= −1, consider the Mobius transformation

S(z) =
t+ z

t− z
,

and set
k = − t+ 1

t− 1
.

Now check that

S(T (z1)) = S(λ) = k,

S(T (z2)) = S(1) = −k,

S(T (z3)) = S(0) = 1,

S(T (z4)) = S(∞) = −1.

When t = −1, consider the Mobius transformation

G(z) =
i+ z

i− z
.

Then check that

G(T (z2) = G(1) = −i

G(T (z3)) = G(0) = 1

G(T (z4)) = G(∞) = −1.

Now let z1 be such that T (z1) = −1. Then

G(T (z1)) = G(−1) = i.

Hence k = i is possible.

Obviously such a quadruple is easy to find. Let H be any Mobius transformation and set z1 = H(−1),
z2 = H(1), z3 = H(0) and z4 = H(∞). In this case T = H−1 and G ◦ T takes z1, z2, z3, z4 to
i,−i, 1,−1 as claimed.



For this question consider Ptolemy’s Theorem: A quadrilateral ABCD is cyclic if and only if the
sum of the products of the opposite sides equals the product of the diagonals. In other words, the
points A, B, C, D lie on a circle if and only if AC ·BD = AB ·DC + AD ·BC.

A

B

C

D

3) Prove Ptolemy’s theorem using the fact that the cross-ratio of four complex numbers is real if and
only if the points lie on a circle.

Solution:

First we change our notation to comply with complex analysis. Let the points A, B, C and D be
denoted by the complex numbers z1, z2, z3 and z4 in the complex plane. Assume further that the
orientation of the points are as given in the figure below.

z1

z2

z3

z4

We want to prove that

|z1 − z2| · |z3 − z4|+ |z2 − z3| · |z1 − z4| = |z1 − z3| · |z2 − z4|

if and only if the points z1, z2, z3, z4 lie on a circle.

For the if part assume that the points lie on a circle.

Let T be the Mobius transformation such that

T (z4) = ∞, T (z3) = 0, T (z2) = 1.

Then
T (z1) = a > 1,



since Mobius transformations preserve circles, that is why a ∈ R, and Mobius transformations pre-
serve the orientation of points on the circle, that is why a > 1.

Since Mobius transformations also preserve cross-ratio, we have

⟨z2, z3, z1, z4⟩ = ⟨T (z2), T (z3), T (z1), T (z4)⟩ = ⟨1, 0, a,∞⟩ = a− 1

a
> 0,

and
⟨z2, z1, z3, z4⟩ = ⟨T (z2), T (z1), T (z3), T (z4)⟩ = ⟨1, a, 0,∞⟩ = 1

a
> 0.

Since ⟨z2, z3, z1, z4⟩ and ⟨z2, z1, z3, z4⟩ are positive and add up to 1, their absolute values also add up
to 1.

Note that

|⟨z2, z3, z1, z4⟩| =
∣∣∣∣z2 − z1
z2 − z4

z3 − z4
z3 − z1

∣∣∣∣ and |⟨z2, z1, z3, z4⟩| =
∣∣∣∣z2 − z3
z2 − z4

z1 − z4
z1 − z3

∣∣∣∣ .
Therefore we have ∣∣∣∣z2 − z1

z2 − z4

z3 − z4
z3 − z1

∣∣∣∣+ ∣∣∣∣z2 − z3
z2 − z4

z1 − z4
z1 − z3

∣∣∣∣ = 1.

Multiplying both sides by |z2 − z4| · |z1 − z3| we get the first part of Ptolemy’s theorem,

|z1 − z2| · |z3 − z4|+ |z2 − z3| · |z1 − z4| = |z1 − z3| · |z2 − z4|.

For the only if part we again use the above Mobius transformation T except that this time we do not
know the nature of a yet but we know that since we have

|z1 − z2| · |z3 − z4|+ |z2 − z3| · |z1 − z4| = |z1 − z3| · |z2 − z4|,

dividing both sides by |z1 − z3| · |z2 − z4| we get∣∣∣∣z2 − z1
z2 − z4

z3 − z4
z3 − z1

∣∣∣∣+ ∣∣∣∣z2 − z3
z2 − z4

z1 − z4
z1 − z3

∣∣∣∣ = 1,

which is equivalent to ∣∣∣∣a− 1

a

∣∣∣∣+ ∣∣∣∣1a
∣∣∣∣ = 1.

This in turn is equivalent to writing
|a− 1|+ 1 = |a|.

In the complex plane we have the triangle

(0, 0) 1 (1, 0)

a

|a− 1|
|a|

We see that the triangle inequality holds as an equality for this triangle. hence the tree vertices of this
triangle are collinear, i.e. a is real proving that the points z1, z2, z3, z4 lie on a circle. (In fact since T
preserves orientaion we must have also a > 1 so the above arguments all fit into place.)

This completes the proof of Ptolemy’s theorem using cross-ratio.



For this question consider Ptolemy’s Theorem: A quadrilateral ABCD is cyclic if and only if the
sum of the products of the opposite sides equals the product of the diagonals. In other words, the
points A, B, C, D lie on a circle if and only if AC ·BD = AB ·DC + AD ·BC.

A

B

C

D

4) Let C be a circle with center at a ∈ C and radius R > 0. For any complex number z, let z∗

denote its symmetric point with respect to C. Prove Ptolemy’s theorem using the fact that for any two

complex numbers z1 and z2, neither being a, we have |z∗1 − z∗2 | =
R2

|z1 − a| |z2 − a|
|z1 − z2|.

Solution:

Notation: Throughout this solution we will treat the points as they are in R2 so that AB denotes the
distance between the two points.

First assume that the given quadrilateral lies on a circle as in the above figure. Let K be a circle
centered at A and containing the above circle in its interior. Let B∗, C∗ and D∗ be the symmetric
points of B, C and D with respect to the circle K. Then the points B∗, C∗ and D∗ lie on a line and
hence

B∗C∗ + C∗D∗ = B∗D∗.

B∗ C∗ D∗

Using the formula for symmetry we see that this equation gives us

BC

AB · AC
+

CD

AC · AD
=

BD

AB · AD
.

Multiplying both sides by AB · AC · AD gives

AD ·BC + AB · CD = AC ·BD,

which establishes one side of Ptolemy’s theorem.

For the second part let S be the circle passing through the points A, B and C. Let K as before be a
circle with center A and containing S in its interior.

Let B∗, C∗ and D∗ be the symmetric points of B, C and D with respect to the circle K. We now
expect to see the following figure.



B∗ C∗

D∗

We are given that
AD ·BC + AB · CD = AC ·BD.

Dividing both sides by AB · AC · AD we get

BC

AB · AC
+

CD

AC · AD
=

BD

AB · AD
.

Using the formula for symmetry we see that this equation gives us

B∗C∗ + C∗D∗ = B∗D∗.

But this means that the points B∗, C∗ and D∗ lie on a line. This in turn means that the symmetry point
D of D∗ lies on the circle S, proving the other part of the theorem.


