MATH 202 Complex Analysis

Homework 3

Solution Key

1) Let ϕ_{N} be the stereographic projection of the Riemann sphere $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+\right.$ $\left.x_{3}^{2}=1\right\}$ onto the complex plane $x_{3}=0,\left(z=x_{1}+i x_{3}\right)$. Let M_{θ} be the rotation of S around the x_{1}-axis, where $-\pi<\theta \leq \pi$. Show that

$$
\phi_{N} \circ M_{\theta} \circ \phi_{N}^{-1}(z)= \begin{cases}\frac{z+i\left(\tan \frac{\theta}{2}\right)}{i\left(\tan \frac{\theta}{2}\right) z+1} & -\pi<\theta<\pi \\ \frac{1}{z} & \theta=\pi,\end{cases}
$$

where the second stereographic projection is with respect to the new North pole of the sphere after the rotation by θ.

Solution:

We set for ease of notation $z=x+i y$. We use the following stereographic projection formulas.

$$
\phi_{N}(U, V, W)=\left(\frac{U}{1-W}, \frac{V}{1-W}\right) \text { and } \phi_{N}^{-1}(z)=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)
$$

For any θ we have

$$
M_{\theta}(U, V, W)=(U, V \cos \theta-W \sin \theta, V \sin \theta+W \cos \theta)
$$

If we set

$$
w(z)=\phi_{N} \circ M_{\theta} \circ \phi_{N}^{-1}(z)=X+i Y
$$

then we have

$$
X+i Y=\left(\frac{2 x}{|z|^{2}+1-2 y \sin \theta-|z|^{2} \cos \theta+\cos \theta}, \frac{2 y \cos \theta-|z|^{2} \sin \theta+\sin \theta}{|z|^{2}+1-2 y \sin \theta-|z|^{2} \cos \theta+\cos \theta}\right) .
$$

We want to find $a, b, c, d \in \mathbb{C}$ such that

$$
X+i Y=\frac{a z+b}{c z+d}=\frac{a z+b}{c z+d} \cdot \frac{\bar{c} \bar{z}+\bar{d}}{\bar{c} \bar{z}+\bar{d}}=\frac{a \bar{c}|z|^{2}+a \bar{d} z+b \bar{c} \bar{z}+b \bar{d}}{c \bar{c}|z|^{2}+c \bar{d} z+\bar{c} d \bar{z}+d \bar{d}}
$$

We now need to solve the following system for the unknowns a, b, c, d for all $z \in \mathbb{C}$.

$$
\begin{aligned}
|z|^{2}+1-2 y \sin \theta-|z|^{2} \cos \theta+\cos \theta & =c \bar{c}|z|^{2}+c \bar{d} z+\bar{c} d \bar{z}+d \bar{d} \\
2 x & =\operatorname{Re}\left(a \bar{c}|z|^{2}+a \bar{d} z+b \bar{c} \bar{z}+b \bar{d}\right) \\
2 y \cos \theta-|z|^{2} \sin \theta+\sin \theta & =\operatorname{Im}\left(a \bar{c}|z|^{2}+a \bar{d} z+b \bar{c} \bar{z}+b \bar{d}\right)
\end{aligned}
$$

At this point it helps if you set $a=a_{1}+i a_{2}, b=b_{1}+i b_{2}, c=c_{1}+i c_{2}, d=d_{1}+i d_{2}$ and search for the real unknowns $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}$.

We find the following solutions:

$$
\begin{array}{lrrr}
a_{1}=-\sqrt{2} \cos \frac{\theta}{2}, & a_{2}=0, & b_{1}=0, & b_{2}=-\sqrt{2} \sin \frac{\theta}{2} \\
c_{1}=0, & c_{2}=\sqrt{2} \sin \frac{\theta}{2}, & d_{1}=-\sqrt{2} \cos \frac{\theta}{2}, & d_{2}=0 .
\end{array}
$$

Thus we obtain the following Mobius transformation.

$$
w(z)=\frac{\left(-\sqrt{2} \cos \frac{\theta}{2}\right) z+\left(-i \sqrt{2} \sin \frac{\theta}{2}\right)}{\left(-i \sqrt{2} \sin \frac{\theta}{2}\right) z+\left(\sqrt{2} \cos \frac{\theta}{2}\right)}
$$

When $\theta \neq \pi$ we can divide each coefficient by the non-zero value $-\sqrt{2} \cos \frac{\theta}{2}$ to obtain

$$
w(z)=\frac{z+i\left(\tan \frac{\theta}{2}\right)}{i\left(\tan \frac{\theta}{2}\right) z+1} \text {, when }-\pi<\theta<\pi \text {. }
$$

When $\theta=\pi$, the Mobius transformation $w(z)$ becomes

$$
w(z)=\frac{1}{z}, \quad \text { when } \theta=\pi
$$

2) Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct points in \mathbb{C}. Let $T(z)=\left(z, z_{2} ; z_{3}, z_{4}\right)$ be the cross-ratio morphism. For any $k \in \mathbb{C}$, can you find a Mobius transformation w such that $w\left(z_{1}\right)=k, w\left(z_{2}\right)=-k, w\left(z_{3}\right)=1$, $w\left(z_{4}\right)=-1$? Can k be equal to i ?

Solution:

Let $t \in \mathbb{C}$ be a complex number such that $t^{2}=T\left(z_{1}\right.$. Note $t \neq 0,1$.
When $t \neq-1$, consider the Mobius transformation

$$
S(z)=\frac{t+z}{t-z},
$$

and set

$$
k=-\frac{t+1}{t-1} .
$$

Now check that

$$
\begin{gathered}
S\left(T\left(z_{1}\right)\right)=S(\lambda)=k \\
S\left(T\left(z_{2}\right)\right)=S(1)=-k \\
S\left(T\left(z_{3}\right)\right)=S(0)=1 \\
S\left(T\left(z_{4}\right)\right)=S(\infty)=-1 .
\end{gathered}
$$

When $t=-1$, consider the Mobius transformation

$$
G(z)=\frac{i+z}{i-z}
$$

Then check that

$$
\begin{aligned}
G\left(T\left(z_{2}\right)=G(1)\right. & =-i \\
G\left(T\left(z_{3}\right)\right)=G(0) & =1 \\
G\left(T\left(z_{4}\right)\right)=G(\infty) & =-1
\end{aligned}
$$

Now let z_{1} be such that $T\left(z_{1}\right)=-1$. Then

$$
G\left(T\left(z_{1}\right)\right)=G(-1)=i
$$

Hence $k=i$ is possible.
Obviously such a quadruple is easy to find. Let H be any Mobius transformation and set $z_{1}=H(-1)$, $z_{2}=H(1), z_{3}=H(0)$ and $z_{4}=H(\infty)$. In this case $T=H^{-1}$ and $G \circ T$ takes $z_{1}, z_{2}, z_{3}, z_{4}$ to $i,-i, 1,-1$ as claimed.

For this question consider Ptolemy's Theorem: A quadrilateral $A B C D$ is cyclic if and only if the sum of the products of the opposite sides equals the product of the diagonals. In other words, the points A, B, C, D lie on a circle if and only if $A C \cdot B D=A B \cdot D C+A D \cdot B C$.

3) Prove Ptolemy's theorem using the fact that the cross-ratio of four complex numbers is real if and only if the points lie on a circle.

Solution:

First we change our notation to comply with complex analysis. Let the points A, B, C and D be denoted by the complex numbers z_{1}, z_{2}, z_{3} and z_{4} in the complex plane. Assume further that the orientation of the points are as given in the figure below.

We want to prove that

$$
\left|z_{1}-z_{2}\right| \cdot\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right| \cdot\left|z_{1}-z_{4}\right|=\left|z_{1}-z_{3}\right| \cdot\left|z_{2}-z_{4}\right|
$$

if and only if the points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle.
For the if part assume that the points lie on a circle.
Let T be the Mobius transformation such that

$$
T\left(z_{4}\right)=\infty, T\left(z_{3}\right)=0, T\left(z_{2}\right)=1
$$

Then

$$
T\left(z_{1}\right)=a>1,
$$

since Mobius transformations preserve circles, that is why $a \in \mathbb{R}$, and Mobius transformations preserve the orientation of points on the circle, that is why $a>1$.

Since Mobius transformations also preserve cross-ratio, we have

$$
\left\langle z_{2}, z_{3}, z_{1}, z_{4}\right\rangle=\left\langle T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{1}\right), T\left(z_{4}\right)\right\rangle=\langle 1,0, a, \infty\rangle=\frac{a-1}{a}>0
$$

and

$$
\left\langle z_{2}, z_{1}, z_{3}, z_{4}\right\rangle=\left\langle T\left(z_{2}\right), T\left(z_{1}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right\rangle=\langle 1, a, 0, \infty\rangle=\frac{1}{a}>0
$$

Since $\left\langle z_{2}, z_{3}, z_{1}, z_{4}\right\rangle$ and $\left\langle z_{2}, z_{1}, z_{3}, z_{4}\right\rangle$ are positive and add up to 1 , their absolute values also add up to 1 .

Note that

$$
\left|\left\langle z_{2}, z_{3}, z_{1}, z_{4}\right\rangle\right|=\left|\frac{z_{2}-z_{1}}{z_{2}-z_{4}} \frac{z_{3}-z_{4}}{z_{3}-z_{1}}\right| \text { and }\left|\left\langle z_{2}, z_{1}, z_{3}, z_{4}\right\rangle\right|=\left|\frac{z_{2}-z_{3}}{z_{2}-z_{4}} \frac{z_{1}-z_{4}}{z_{1}-z_{3}}\right| .
$$

Therefore we have

$$
\left|\frac{z_{2}-z_{1}}{z_{2}-z_{4}} \frac{z_{3}-z_{4}}{z_{3}-z_{1}}\right|+\left|\frac{z_{2}-z_{3}}{z_{2}-z_{4}} \frac{z_{1}-z_{4}}{z_{1}-z_{3}}\right|=1
$$

Multiplying both sides by $\left|z_{2}-z_{4}\right| \cdot\left|z_{1}-z_{3}\right|$ we get the first part of Ptolemy's theorem,

$$
\left|z_{1}-z_{2}\right| \cdot\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right| \cdot\left|z_{1}-z_{4}\right|=\left|z_{1}-z_{3}\right| \cdot\left|z_{2}-z_{4}\right| .
$$

For the only if part we again use the above Mobius transformation T except that this time we do not know the nature of a yet but we know that since we have

$$
\left|z_{1}-z_{2}\right| \cdot\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right| \cdot\left|z_{1}-z_{4}\right|=\left|z_{1}-z_{3}\right| \cdot\left|z_{2}-z_{4}\right|
$$

dividing both sides by $\left|z_{1}-z_{3}\right| \cdot\left|z_{2}-z_{4}\right|$ we get

$$
\left|\frac{z_{2}-z_{1}}{z_{2}-z_{4}} \frac{z_{3}-z_{4}}{z_{3}-z_{1}}\right|+\left|\frac{z_{2}-z_{3}}{z_{2}-z_{4}} \frac{z_{1}-z_{4}}{z_{1}-z_{3}}\right|=1,
$$

which is equivalent to

$$
\left|\frac{a-1}{a}\right|+\left|\frac{1}{a}\right|=1 .
$$

This in turn is equivalent to writing

$$
|a-1|+1=|a|
$$

In the complex plane we have the triangle

We see that the triangle inequality holds as an equality for this triangle. hence the tree vertices of this triangle are collinear, i.e. a is real proving that the points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle. (In fact since T preserves orientaion we must have also $a>1$ so the above arguments all fit into place.)

This completes the proof of Ptolemy's theorem using cross-ratio.

For this question consider Ptolemy's Theorem: A quadrilateral $A B C D$ is cyclic if and only if the sum of the products of the opposite sides equals the product of the diagonals. In other words, the points A, B, C, D lie on a circle if and only if $A C \cdot B D=A B \cdot D C+A D \cdot B C$.

4) Let C be a circle with center at $a \in \mathbb{C}$ and radius $R>0$. For any complex number z, let z^{*} denote its symmetric point with respect to C. Prove Ptolemy's theorem using the fact that for any two complex numbers z_{1} and z_{2}, neither being a, we have $\left|z_{1}^{*}-z_{2}^{*}\right|=\frac{R^{2}}{\left|z_{1}-a\right|\left|z_{2}-a\right|}\left|z_{1}-z_{2}\right|$.

Solution:

Notation: Throughout this solution we will treat the points as they are in \mathbb{R}^{2} so that $A B$ denotes the distance between the two points.

First assume that the given quadrilateral lies on a circle as in the above figure. Let K be a circle centered at A and containing the above circle in its interior. Let B^{*}, C^{*} and D^{*} be the symmetric points of B, C and D with respect to the circle K. Then the points B^{*}, C^{*} and D^{*} lie on a line and hence

$$
B^{*} C^{*}+C^{*} D^{*}=B^{*} D^{*}
$$

Using the formula for symmetry we see that this equation gives us

$$
\frac{B C}{A B \cdot A C}+\frac{C D}{A C \cdot A D}=\frac{B D}{A B \cdot A D} .
$$

Multiplying both sides by $A B \cdot A C \cdot A D$ gives

$$
A D \cdot B C+A B \cdot C D=A C \cdot B D
$$

which establishes one side of Ptolemy's theorem.
For the second part let S be the circle passing through the points A, B and C. Let K as before be a circle with center A and containing S in its interior.

Let B^{*}, C^{*} and D^{*} be the symmetric points of B, C and D with respect to the circle K. We now expect to see the following figure.

We are given that

$$
A D \cdot B C+A B \cdot C D=A C \cdot B D
$$

Dividing both sides by $A B \cdot A C \cdot A D$ we get

$$
\frac{B C}{A B \cdot A C}+\frac{C D}{A C \cdot A D}=\frac{B D}{A B \cdot A D} .
$$

Using the formula for symmetry we see that this equation gives us

$$
B^{*} C^{*}+C^{*} D^{*}=B^{*} D^{*}
$$

But this means that the points B^{*}, C^{*} and D^{*} lie on a line. This in turn means that the symmetry point D of D^{*} lies on the circle S, proving the other part of the theorem.

