Date: 8 January 2022 Saturday
Time: 12:00-14:30 Instructor: Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

Math 202 Complex Analysis - Final Exam Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Calculate the principal value of $i^{(1+i)}$ and write the result in the rectangular form $a+i b$ where $a, b \in \mathbb{R}$. (Recall that "principal value" means that the argument of a complex number is to be considered between $-\pi$ and π.)

Solution:

$$
\begin{aligned}
i^{(1+i)} & =\exp [(1+i) \log i] \\
& =\exp \left[(1+i)\left(i \frac{\pi}{2}\right)\right] \\
& =\exp \left[-\frac{\pi}{2}+i \frac{\pi}{2}\right] \\
& =e^{-\pi / 2}\left[\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \\
& =i e^{-\pi / 2}
\end{aligned}
$$

Q-2) Consider the mapping given by

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right) .
$$

Describe the images, under this mapping, of the circles $|z|=R>0$. What happens when $R=1$?

Solution:

Let $z=x+i y$ and $w=u+i v$.
Then we have

$$
w=\frac{1}{2}\left(x+\frac{x}{x^{2}+y^{2}}\right)+\frac{i}{2}\left(y-\frac{y}{x^{2}+y^{2}}\right)
$$

and hence when $x=R \cos \theta$ and $y=R \sin \theta$, we have

$$
u=\frac{1}{2}\left(R+\frac{1}{R}\right) \cos \theta, \text { and } v=\frac{1}{2}\left(R-\frac{1}{R}\right) \sin \theta .
$$

Eliminating θ between u and v we get, when $R \neq 1$,

$$
\frac{u^{2}}{\frac{1}{4}\left(R+\frac{1}{R}\right)^{2}}+\frac{v^{2}}{\frac{1}{4}\left(R-\frac{1}{R}\right)^{2}}=1 .
$$

Thus the images of the circle $|z|=R$ under this map are ellipses.
Note however that for $R>0$, the circles with radii R and $1 / R$ map to the same ellipse but with reverse orientation. This is because they lie on different copies of the w-plane. These two planes are cut along $[-1,1]$ and glued together, the upper part of one to the lower part of the other.

When $R=1$, the unit circle in the z-plane is then mapped onto this cut, the upper part of the circle being in one sheet and the lower part in the other sheet.

Q-3) Evaluate the integral $\int_{0}^{\infty} \cos x^{2} d x$.
Hint: You may find the following contour useful.

Solution:

Use the function $f(z)=e^{i z^{2}}$ together with the contour given above.
There are no poles of $f(z)$ inside the contour so we have

$$
\int_{\gamma_{R}} f(z) d z=0 .
$$

- On $L_{1}: z=x, 0 \leq x \leq R$ and

$$
\int_{L_{1}} f(z) d z=\int_{0}^{R} e^{i x^{2}} d x=\int_{0}^{R} \cos x^{2} d x+i \int_{0}^{R} \sin x^{2} d x
$$

- On $-L_{2}: z=\alpha x, 0 \leq x \leq R$ and $d z=\alpha d x$ where $\alpha=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}$. Note that $\alpha^{2}=i$ so $z^{2}=i x^{2}$. Then we have

$$
\int_{L_{2}} f(z) d z=-\int_{-L_{2}} f(z) d z=-\alpha \int_{0}^{R} e^{-x^{2}} d x \rightarrow-\alpha \frac{\sqrt{\pi}}{2} \text { as } R \rightarrow \infty \quad \text { (from Calculus) }
$$

- On $C_{R}: z=R e^{i \theta}, 0 \leq \theta \leq \pi / 4, d z=R i e^{i \theta} d \theta, z^{2}=R^{2} e^{i 2 \theta}=R^{2} \cos 2 \theta+i R^{2} \sin 2 \theta$. Then

$$
\begin{aligned}
\left|\int_{C_{R}} f(z) d z\right|=\left|\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta} e^{-R^{2} \sin 2 \theta} i R e^{i \theta} d \theta\right| & \leq R \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} d \theta \\
& =\frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin t} d t \leq \frac{R}{2} \frac{\pi}{2 R^{2}} \rightarrow 0 \text { as } R \rightarrow \infty .
\end{aligned}
$$

Putting these together and taking the limit as $R \rightarrow \infty$ we get

$$
\int_{0}^{\infty} \cos x^{2} d x+i \int_{0}^{\infty} \sin x^{2} d x-\alpha \frac{\sqrt{\pi}}{2}=0 .
$$

Equating real and imaginary parts separately we finally obtain

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}} .
$$

Q-4) Prove that $\prod_{k=0}^{\infty}\left(1+z^{2^{k}}\right)$ converges uniformly on compact subsets of $|z|<1$. Find the limiting function.
(This is exercise 6 at the end of chapter 17 in Bak \& Newman, Complex Analysis.)
Hint: A power series converges uniformly on compact subsets of its domain of convergence.

Solution:

Let $P_{n}=\prod_{k=0}^{n}\left(1+z^{2^{k}}\right)$ be the sequence of partial products.
It is immediate to see, after writing down the first few terms of the sequence, that

$$
P_{n}=1+z+z^{2}+\cdots+z^{2^{n+2}-1} .
$$

Hence

$$
\prod_{k=0}^{\infty}\left(1+z^{2^{k}}\right)=\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}
$$

where we know that the sum converges uniformly on compact subsets of $|z|<1$.

Q-5) Show that the polynomial

$$
P(z)=(2022)^{2} z^{2022}+\sum_{k=1}^{2021} k z^{k}+2022
$$

has all its roots inside $|z|<1$.
Hint: You may find Rouché's theorem useful: (verbatim from Bak \& Newman) Supoose that f and g are analytic inside and on a regular closed curve γ and that $|f(z)|>|g(z)|$ for all $z \in \gamma$. Then $f+g$ and f have the same number of zeros inside γ.

Solution:

Let

$$
f(z)=(2022)^{2} z^{2022} \text { and } g(z)=\sum_{k=1}^{2021} k z^{k}+2022 .
$$

Define the real valued function $G(z)$ as

$$
G(z)=2021|z|^{2021}+2020|z|^{2020}+\cdots+|z|+2022 .
$$

By triangle inequality we know that

$$
|g(z)| \leq G(z)
$$

It is also clear that

$$
\frac{|f(z)|}{|g(z)|} \geq \frac{|f(z)|}{G(z)} .
$$

Now putting $|z|=1$ we get

$$
\frac{|f(z)|}{|g(z)|} \geq \frac{|f(z)|}{G(z)}=\frac{2022^{2}}{1+2+\cdots+2022}=\frac{2022 \cdot 2022}{1011 \cdot 2023}>1 .
$$

Hence for $|z|=1$ we have $|f(z)|>|g(z)|$. Then by Rouché's theorem $f(z)$ and $P(z)=f(z)+g(z)$ have the same number of zeros inside $|z|<1$, counting multiplicities. Clearly $f(z)$ has 2022 zeros inside the unit disc and thus $P(z)$ has 2022 zeros there. But $P(z)$ is a polynomial of degree 2022, so it has no other zeros elsewhere.

