MATH 202 Complex Analysis
 Homework 1 Due date: 15 October 2021 Friday Class Time

Show your work in reasonable detail. It is important that you explain your solution in a convincing way. The grader can but will not do mind reading!

1) Calculate the following and give your answer in rectangular form $a+i b$ where a and b are real numbers.
(a) All cubic roots of i.
(b) $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2021}$.
2) Let $f(z)=u(x, y)+i v(x, y)$ be an entire function and let c_{1}, c_{2} be two real numbers. Assume that the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ intersect at a point $z_{0}=x_{0}+i y_{0}$. Show that these two curves intersect at z_{0} at right angles if $f^{\prime}\left(z_{0}\right) \neq 0$.
3) Let $f(z)$ be analytic at z_{0}, and $g(z)$ be analytic at $w_{0}=f\left(z_{0}\right)$. Show that $(g \circ f)(\mathrm{z})$ is analytic at z_{0} and moreover show that $(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(w_{0}\right) f^{\prime}\left(z_{0}\right)$.
4) Consider the images of the hyperbolas $x^{2}-y^{2}= \pm c^{2}$ under the mapping $f(z)=z^{2}$, where $c>0$. Show that you have two sheets on the image and show how these sheets are glued together so that f becomes one-to-one and onto this new surface.
5) Calculate the principal value of $\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{i}$.
